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Introduction

The Standard Model of Fundamental Interactions has been extremely successful in explaining
particle physics observations up to energies of a few TeV. Yet, astrophysical and cosmological data
suggest that more than 80% of the matter energy density in the Universe cannot be accounted
for in terms of ordinary matter. In this work we consider extensions of the Standard Model based
on the same principles that justify its effectiveness and featuring accidentally stable composite
dark matter candidates.

The success of the Standard Model in describing all the observed microscopic phenomena
can be understood if it is considered as an effective field theory with an high ultraviolet cut-off.
Higher dimensional non-renormalizable operators are suppressed by powers of the cut-off scale
and become irrelevant in the infrared. The renormalizable lagrangian features some accidental
global symmetries, such as baryon and lepton number conservation, and custodial symmetry;
these give a natural explanation to many experimental observations. A fundamental ingredient
of the Standard Model is its gauge theory structure, which provides a rich infrared dynamics
while giving, nonetheless, a renormalizable field theory.

We consider such properties as paradigmatic, offering a theoretical rational for the success
of the Standard Model, and try to use them as guidance principles to build possible extensions
featuring a dark matter candidate.

We focus on extensions of the Standard Model based on a new non-Abelian gauge interaction
(with gauge group GDC) and new fermionic fields (dark quarks) charged under both GDC and
GSM. We refer to the field content added to the Standard Model as the dark sector. Differently
from technicolor and composite Higgs models, we require that the dark sector dynamics does not
break the Standard Model gauge group.

Previous works have studied QCD-like models which have accidentally stable baryon-like
states that can account for the dark matter [1, 2]. The purpose of this thesis is to generalise this
construction and understand if there are different scenarios which, despite being based on the
same framework, feature a different dynamics and phenomenology.

As a first step, we critically analyse the implicit assumptions of these models and suggest
possible generalisations, identifying some interesting alternatives which have received little
attention.

An interesting class of models is that of chiral models, based on complex representations of the
gauge group, in which the fermionic fields transform in a complex (reducible) representation of
the gauge group. After discussing some general properties and what are the necessary conditions
to have a consistent model and preserve GSM, we focus on the case GDC = SU(N)DC and argue
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on general ground, using ’t Hooft anomaly matching, that in the absence of fundamental scalar
fields these models have always light states. This considerations are compared with the case
of the Standard Model, which is itself a chiral theory, giving a different viewpoint on some
well-known facts.

We then consider models based on real representations and focus on the scenario in which
the dark colour gauge group dynamics has an infrared fixed point, up to deformations induced by
fermions mass terms. We discuss general model building issues and how the would-be conformal
symmetry is broken by the mass terms, inducing a confining dynamics. We identify, in particular,
a model with a perturbative infrared fixed point and consider two possible assignments of Standard
Model quantum numbers as benchmark scenarios. The dark sector field content corresponds to
five Weyl fermions, each one transforming as the adjoint of the gauge group GDC = SU(3)DC,
together with the gauge bosons (dark gluons). We discuss the dynamics of these models, with an
emphasis on asymptotic states below the confinement scale (gluonium bound states, i.e. glueballs,
and gluon-quark bound states, i.e. gluequarks) and their accidental stability.

As a last step, we study the phenomenology of the two models, with particular attention
to the consistency with cosmological observations. Assuming that all the dark quarks have the
same mass, the model can be characterised by two scales, namely the confinement scale ΛDC and
the dark quark mass MQ. A natural hierarchy of scales arises from the structure of the model
and we study the different phenomenological regimes as a function of the two scales.

After estimating the glueball lifetime with an effective field theory approach, we identify two
relevant regimes for the models: one in which the glueballs are stable on cosmological scales and
one in which they decay quickly.

The first scenario has a non-standard cosmology with so called cannibalism in the glueball
sector (i.e. number changing interactions involving only glueballs, such as 3→ 2 processes). This
translates into an unusual scale dependence of the dark sector temperature. We evaluate the
glueballs relic density and the cosmological bounds, concluding that this parameter space region
is excluded by observations.

In the second scenario the only stable relics are gluequarks. To evaluate their relic density,
we compute the cross section for the annihilation of dark quarks in dark gluons, including the
Sommerfeld enhancement correction. In order to reproduce the dark matter relic abundance,
dark quarks with mass in the range MQ = (1÷ 10)TeV are needed.

The thesis is organised as follows. Chapter 1 and 2 are devoted to presenting the motivations
and the aims of this work. In the first one we discuss the reasons for going beyond the Standard
Model, briefly reviewing the status of the theory, with a particular emphasis on the evidences
and properties of dark matter. In chapter 2 we discuss what are the motivations for considering
composite dark matter models based on non-Abelian gauge theories and than provide an overview
of the framework we shall be considering, identifying the purposes of the thesis in relation to the
literature. The original content of the thesis is presented in the chapters 3, 4 and 5, together with
some background material. The original results include an analysis of some dynamical properties
of chiral models (chapter 3), the introduction and study of two possible models for composite
dark matter with an infrared fixed point (chapter 4) and the study of the phenomenology of the
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two models previously introduced, taking into account the cosmological constraints (chapter 5).
In the conclusions we summarise our results and give an outlook of the possible extensions of
this work.
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Chapter 1

Motivations

Particle physics and its connections to cosmology offer some of the most pressing unanswered
questions in modern science.

In what follows we shall present a short summary of the current status of the theory, explaining
why we believe that the Standard Model is not a complete theory. Afterwards, we focus on the
problem of dark matter and outline the main observational evidences and what we know about
its properties.

1.1 Successes and limitations of the Standard Model

The Standard Model of Fundamental Interactions offers an accurate description of the elementary
constituents of matter1. It is a quantum field theory based on the gauge group GSM = SU(3)c ×
SU(2)EW × U(1)Y , broken to SU(3)c × U(1)em through the Higgs mechanism. Its fermionic
field content can be described through the following irreducible representations of GSM:

QL =

(
3, 2,

1

6

)
⊕ uR =

(
3, 1,

2

3

)
⊕ dR =

(
3, 1,−1

3

)
⊕ LL =

(
1, 2,−1

2

)
⊕ eR =

(
1, 1,−1

)
where ψL(R) denotes a left-handed (right-handed) spinor, and hypercharge is chosen to satisfy
the normalization Qem = T3 + Y . In addition to the fermions, the Standard Model includes a
complex scalar field (Higgs field), transforming as

H =

(
1, 2,

1

2

)
H has a non-zero vacuum expectation value, realising the Higgs mechanism which leads to the
breaking of the Standard Model gauge group.

1.1.1 Status

The discovery of the Higgs boson in 2012 by the ATLAS and CMS collaborations operating at
the LHC represents only the last of a long series of experimental successes.

1Elementary up to a distance scale of order 10−18 m
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6 CHAPTER 1. MOTIVATIONS

Quantum Chromodynamics explains satisfactorily the structure of mesons and baryons,
their classification and their interactions, as well as all the observations in hadronic physics.
Although the theory is non-perturbative in the low energy regime, the use of effective field theories
(such as chiral perturbation theory) and the development of non-perturbative methods (such as
lattice simulations) have provided an accurate description of the phenomenology. Asymptotic
freedom, confinement and chiral symmetry breaking are properties which are well accounted
by this description and verified experimentally. Moreover, the theoretical study of the non-
perturbative structure of gauge theories through semiclassical methods (such as instantons) and
the development of alternative perturbative expansions (such as the large Nc expansion), have
offered a more complete and profound point of view on many phenomenological aspects.

The Standard Model is completely predictive also for what concerns flavour physics. All
the observed flavour violation effects can be explained in terms of the CKM matrix parameters:
three mixing angles and one complex phase. The existence of the charm quark, conjectured the
explain the suppression of flavour changing neutral currents, and that of a third generation of
quarks, necessary to account for the CP symmetry violation in the weak interactions, have been
two among the most well known theoretical prediction of the Standard Model that have been
experimentally verified.

Lastly, the electroweak sector describes in a unified setting the electromagnetic and weak
interactions. The observation of neutral currents and, later, of the massive vector bosons W and
Z have confirmed experimentally the Weinberg-Salam model of electroweak interactions based
on the pattern of symmetry breaking SU(2)EW × U(1)Y → U(1)em. Nevertheless, it has been
only with the discovery of the Higgs boson in 2012 that the dynamical mechanism at the origin
of the electroweak symmetry breaking has been probed directly. All the experimental results,
such as interaction vertices with the gauge bosons and Yukawa coupling with fermions, agree
with the simple hypothesis of an Higgs field (complex scalar doublet). Altogether, electroweak
precision tests put strong constraints on the eventuality of a new dynamics at the TeV scale.

1.1.2 Problems

Despite the many successes of the Standard Model, there are several aspects that appear to be
not satisfactory from a theoretical point of view and some experimental observations are not
explained by the model.

From a theoretical perspective:

◦ There are strong indication in favour of an algebraical unification of the gauge group.
For instance, considering the group SU(5) and properly identifying some of its subgroups
with the factor of the Standard Model gauge group GSM, it is possible to organise all the
fermionic fields in just two irreducible representations: 5̄ ⊕ 10, with a multiplicity of 3

(number of generations). Studying the evolution of the gauge coupling constants at high
energies under the renormalization group flow, one can show that they become comparable
at an energy scale of order 1015 GeV. However the unification is not completely realised
and the extension of the Higgs mechanism presents some problems.
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◦ Gravity can be included in the Standard Model, which however becomes non-renormalizable.
This limits the regime of validity of the theory, which has an ultraviolet cut-off at the scale
of the Planck mass MPl ∼ 1019 GeV; beyond this scale an UV completion is needed.

◦ The hypercharge gauge group U(1)Y is not asymptotically free and perturbativity is lost at
energy scales near its Landau pole. In general one would expect a UV completion, unless
the theory is proven to be asymptotically safe.

◦ The mass term in the Higgs potential has positive energy dimension and is not protected by
any symmetry. In a generic ultraviolet completion of the Standard Model in which the mass
of the Higgs boson in the effective IR theory is calculable, we expect terms proportional to
the UV cut-off scale. In order to have a light Higgs in the infrared theory it is necessary to
have very precise cancellations in the ultraviolet theory which appear to be unnatural. This
is called the naturalness problem. In particular, if we accept that the Standard Model has
an UV completion at the scale of the Planck mass, we would expect corrections proportional
to MPl. The huge discrepancy between the electroweak scale and the Planck mass is often
referred to as the hierarchy problem.

◦ The cosmological constant is several order of magnitudes smaller than one would expects
from the estimates done in the Standard Model, giving again a problem of naturalness.

◦ The Standard Model has a great number of free parameters: 19 without including the
neutrinos masses and mixings (but including the θ parameter). In particular, there are 9
Yukawa couplings that describe the interaction strength of the fermions with the Higgs
field. These display a hierarchical structure whose origin is not explained by the Standard
Model.

From a phenomenological point of view, there are some experimental observations that have no
explanation in the Standard Model:

◦ Neutrino oscillations, whose evidence is now well proven, require a mass different from zero
for at least two flavours of neutrinos. It is still an open question what is the origin of their
mass, that could be of the Majorana type (inducing lepton number violation), or Dirac (in
which case it is necessary to introduce a new fermionic field, the right-handed neutrino,
which is a singlet under the Standard Model gauge group).

◦ The QCD lagrangian includes a term θGµνG̃
µν which induces the violation of P and CP

symmetries in the strong interactions. These effect would induce an electric dipole moment
for the neutron, which is not observed. There is a strong upper bound θ < 10−10 and we
would like to have an explanation for the occurrence of such a small number.

◦ Astrophysical observations ranging from galactic to cosmological scaled, suggest that the
80% of the matter present in the Universe in non-baryonic. The observations can be
explained satisfactorily postulating the existence of a new form of matter which is usually
referred to as dark matter.
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1.2 The case for dark matter

Dark matter is an unknown form of non-baryonic matter whose existence is postulated in order
to explain several astrophysical observations. Understanding the fundamental nature of dark
matter is one of the most pressing unsolved problems in modern physics. At the moment, all the
solid evidences for dark matter2 are gravitational in nature. We shall briefly review the main
observations and then present a summary of how they constrain the properties of dark matter.

1.2.1 Observational evidence

One of the most compelling evidences in favour of dark matter is that its existence can explain
in a very economical and satisfactory way a great number of measurements on vastly different
scales and based on much different techniques.

The first strong indication that a large fraction of the mass in the Universe is dark was
provided by the measurement of the rotation curves of spiral galaxies [4, 5] (see also reference [6]
for more recent results). By means of spectroscopic surveys it is possible to measure the circular
velocity of the stars in a galaxy vc as a function of their distance from the galactic center. From
standard Newtonian mechanics one expects:

vc =

√
GNM

r

where M is the mass enclosed in a sphere of radius r, as dictated by the Gauss’ law for classical
gravity. For distances greater than the galaxy disk r > Rdisk the enclosed mass M should be
constant (all the visible mass is concentrated in the disk); therefore we obtain the scaling law
vc ∝ r−1/2. Observations, however, give flat rotation curves at large distances (see figure 1.1),
implying M(r) ∝ r. This suggests that a vast portion of the matter in spiral galaxies is invisible
and is not confined in the galactic disk. This component is called dark matter. From the accurate
measurement of rotation curves it is possible to reconstruct the density profile of matter inside a
galaxy [7]. The result, for spiral galaxies, is that while visible matter is distributed on a disk,
dark matter form a spherical halo that extends on scales of order Rhalo ∼ 100 kpc. These results
are supported also by numerical studies on the stability of galaxies that show that spiral galaxies
must be surrounded by an halo of dark matter [8]. Using the virial theorem it is possible to
estimate also the average velocity of dark matter inside an halo, obtaining v ∼ 100 km/s; this
tells us that dark matter must be non-relativistic.

Further evidence is provided by observations of clusters of galaxies on a typical scale of
Rcluster ∼ 10Mpc. Applying the virial theorem, knowing the velocity dispersion of the galaxies
in a cluster, one can estimate the total mass contained in the cluster. Comparing this value with
the mass of the observed galaxies, one obtains the ratio of dark and visible matter. This is found
to be of order

M

Mvisible
∼ 100

2Leaving aside disputed claims of direct or indirect detection such as the anomaly observed by the DAMA/LIBRA
experiment at Gran Sasso National Laboratory [3].
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Figure 1.1: Rotation curves of spiral galaxies from the original article of Rubin et al. [4]. At large radial
distances from the center, the curves appear to be flat, suggesting a distribution of matter M(r) ∝ r.
This is in contrast with the expectations based on the distribution of visible matter (i.e. stars).

in a typical cluster. Indeed, this was first done by the astronomer Fritz Zwicky in 1933 [9], who
subsequently was the first to notice that some form of dark (i.e. invisible) matter was needed to
explain the large ratio.

More recently, gravitational lensing observations have provided a new independent strong
evidence for dark matter. A particular convincing observation has been the one concerning
two clusters spotted just after their collision [10,11]. The density profile reconstructed through
lensing observation appears to be displaced with respect to the distribution of hot gas, obtained
through X-ray observations. The hot gas component usually represents the 90% of the total
budget of baryonic matter in a cluster, with galaxies representing the remaining 10%. Moreover
the distribution of galaxies follows the gravitational potential, providing strong evidence that the
cluster is dominated by dark matter (figure 1.2).

One of the first hypothesis advanced to explain the nature of dark matter was that it was
composed by a population of compact astrophysical objects with low luminosity, such as planets,
neutron stars and black holes (MACHO). However, gravitational microlensing surveys have
excluded this possibility [12].

Finally, cosmological observations on scales r > 100Mpc strengthen the evidence for dark
matter and clarify unequivocally its non-baryonic nature. Big Bang Nucleosynthesis [13] predicts
the relative abundance of primordial elements in term of the parameter η, the ratio of the number
of nucleons and photons

η =
nB
nγ

In particular, astrophysical measurements [14] of the number ratio of deuterium to hydrogen give
a baryon-to-photon ratio

η = (6.0± 0.1) 10−10

From this value and the knowledge of the number density of photons, which can be simply
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(a) Superposition of a color image of the merging
cluster 1E0657-558 with gravitational potential
profile obtained through gravitational lensing
observations (green lines).

(b) Superposition of an X-ray image of the merg-
ing cluster 1E0657-558 with gravitational po-
tential profile obtained through gravitational
lensing observations (green lines).

Figure 1.2: The distribution of hot plasma (signalled by X-ray emissions), which constitutes about the
90% of the baryonic matter in a cluster, is displaced with respect to the gravitational potential profile.
This observation suggests that the cluster is dominated by dark matter.

obtained integrating the black body spectrum describing CMB radiation, it is possible to derive
the present day baryon density parameter [14]

ΩBh
2 = 0.0220± 0.0005

where h is the reduced Hubble constant defined by the relation H0 = 100h kms−1 Mpc−1. This
value of Ωb is much larger than the energy density of visible matter (i.e. stars) Ωlumh

2 ∼ 0.0012 [15],
suggesting that a large portion of baryonic matter is given by intergalactic plasma. However,
the obtained value cannot account for the cold matter density ΩMh

2 ' 0.15, which has been
measured through studies of galaxy clusters and type-Ia supernovae [14]. This result gives a
strong evidence that the vast majority of non-relativistic matter in the Universe is non-baryonic
dark matter.

Yet another independent indication of the presence of dark matter comes from the precision
measurement of the spectrum of anisotropies in the cosmic microwave background radiation
(CMB). Fitting the spectrum observed by the Planck satellite, it has been possible to extract the
values of the cosmological parameters [16], yielding to the values

ΩBh
2 = 0.02226± 0.00023

ΩDMh
2 = 0.1186± 0.0020

The agreement of the different independent determinations is impressive and strengthen the
hypothesis that all the observations can be explained in terms of a new form of non-baryonic
matter, whose elementary nature and properties are still largely unknown.

A caveat to this conclusion is represented by the scenario in which dark matter is in the form
of primordial black holes, composed by ordinary matter and collapsed before the epoch of Big
Bang Nucleosyntesis. This scenario has been tested through gravitational lensing observation
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Figure 1.3: Temperature power spectrum of the cosmic microwave background radiation measured by
Planck 2015 [16], compared with the best fit based on the ΛCDM cosmological model.

and almost all the parameter space has been ruled out [17].
Lastly, we stress that observations of bullet-like clusters provide a strong evidence in favour

of the particle nature of dark matter [18]. Indeed, theories of modified gravity can explain
in a simple way the observation of galactic rotation curves but encounter great difficulties in
explaining the observed displacement among the gravitational potential and baryonic matter
in the Bullet cluster. Further difficulties arise in explaining the cosmological observations, for
which a fully relativistic theory is needed.

1.2.2 What we know about dark matter

A strong experimental and theoretical effort has been devoted to understand the nature of
dark matter. Even though we did not uncover its nature and properties yet, we have gained
some knowledge on the features that a dark matter candidate should satisfy in order to be
phenomenologically viable.

In summary, what we know about dark matter is that:

◦ its relic abundance must be [16]: ΩDMh
2 = 0.1186± 0.0020, as discussed in the previous

section.

◦ it must be cold. Numerical simulations on the cosmological formation of large scale
structures suggest the dark matter should be cold, meaning that it has to be non-relativistic
already at the epoch of structure formation [19].

◦ it must be non-baryonic. As discussed in the previous section, Big Bang Nucleosynthesis
and CMB data provide a determination of the density parameter for baryonic matter and
dark matter separately, suggesting that dark matter is non-baryonic.
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◦ dark matter self interaction cross section must satisfy the bound σ/m ≤ 1 cm2g−1. This
has been obtained from astrophysical observations of bullet-like clusters [10,11].

◦ a dark matter candidate must be neutral under the electromagnetic interactions [20].



Chapter 2

Composite dark matter

We want to study possible extensions of the Standard Model (SM) in which a dark matter
candidate arises. Yet, we would like to keep the successful aspects of the SM. In this chapter we
first analyse what are the properties of the SM that can explain its effectiveness and then try to
use them as guidance principles (section 2.1).

We focus mainly on model building aspects and consider models with a dark sector with a
non-Abelian gauge dynamics leading to accidentally stable composite dark matter candidates.

In section 2.2 we provide an overview of the framework we shall be considering and of the
literature of works based on similar principles and motivations. The starting point of our work
will be a critical analysis of the implicit assumptions of models of accidental composite dark
matter based on vectorlike confinement (section 2.3).

Once we have determined what are these assumptions and why they render the models
successful, we shall try to understand what are the possible generalisations. In section 2.4 we
outline the possible routes that can be pursued to build new class of models for a composite dark
sector with composite dark matter.

2.1 The successful paradigm of the Standard Model

The Standard Model (SM) lagrangian corresponds to the most general renormalizable lagrangian
compatible with Lorentz and gauge invariance and comprising the SM field content. Its gauge
theory structure, apart from being necessary in order to implement the massless spin 1 particles
in the theory [21], is a fundamental ingredient in the proof of its renormalizability [22,23].

The incredible effectiveness of the SM can be explained if we regard it as an effective field
theory describing the low energy dynamics of a more fundamental UV theory, with an high cut-off
ΛUV [24]. The higher dimensional non-renormalizable operators are irrelevant in the infrared,
being suppressed by powers of the cut-off scale.

Leff = LSM + c(5)O5 +
∑
i

c
(6)
i O6

i + · · ·

At low energies the dynamics is well described by the renormalizable lagrangian LSM which
features some accidental global symmetries.

13



14 CHAPTER 2. COMPOSITE DARK MATTER

2.1.1 Accidental Stability

One of the great successes of the Standard Model is its ability to explain in a natural way the
stability of all the matter that surrounds us in everyday life.

As we know, ordinary matter is composed by atoms, which in turn are bound states of nuclei
(made of neutrons and protons) and electrons, held together by electromagnetic interactions
mediated by the photon.

Any fundamental theory describing the Universe should explain the stability of ordinary
matter in a satisfactory way. The Standard Model accomplish this task through the following
explanations:

◦ The stability of the electron follows from charge and energy conservation: it is the lightest
state charged under the electromagnetic interaction.

◦ The photon and graviton stability is a consequence of their vanishing mass and Lorentz
invariance.

◦ Lorentz invariance ensures the stability also of the lightest neutrino, since it is the lightest
spin 1/2 particle.

◦ The stability of the lightest baryon (the proton) is a consequence of an accidental symmetry,
called baryon number conservation.

The stability of electron, neutrino, photon and graviton follows from deep physical principles:
charge conservation, a consequence of the gauge structure of electromagnetic interactions, and
Lorentz invariance. On the contrary, the stability of baryons seems somehow peculiar.

The baryon number conservation is a consequence of a global U(1)B symmetry of the
Standard Model renormalizable lagrangian. At the non-renormalizable level, higher dimensional
operators can induce a violation of this symmetry, resulting in the proton decay through processes
such as p → e+π0 or p → νπ+. Baryon number violation arises at the level of dimension 6
operators, which are suppressed by two powers of the cut-off scale ΛUV. Current bounds give
τ(p→ e+π0) ≥ 1.6× 1034 y [25].

Indeed, already in the Standard Model the U(1)B symmetry is broken explicitly by quantum
effects, since it has a non-vanishing anomaly with respect to the electroweak gauge interaction.
However, the processes causing the baryon number violation involve some selection rules that
prevent the proton from decaying [26]. In addition, the rate of baryon number violating processes
is suppressed by non-perturbative factors, exp

(
−16π2/g2

2

)
� 1, so that process involving baryon

number violation have rates to small to be observationally relevant.

2.2 Gauge theories for composite Dark Matter

A dark matter candidate, in order to be successful needs to be stable on cosmological scales, i.e.
its lifetime must be longer than the age of the Universe.
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An appealing possibility is that the dark matter candidate is stable thanks to an accidental
symmetry, similarly to what happens for the baryons in the Standard Model. In order for this to
be the case, we restrict our attention to renormalizable models.

We focus here on this possibility and consider models in which there is a new non-abelian
gauge group GDC inducing a strong dynamics and new fermionic fields (dark quarks). We refer
to the field content added to the Standard Model as the dark sector. The composite states of
the dark sector can be accidentally stable thanks to a global symmetry of the renormalizable
lagrangian. If there is a neutral state which is accidentally stable, then it can be a successful
dark matter candidate, provided it respects all the others phenomenological constraints and it
reproduces the correct relic abundance.

We are interested in studying models in which the dark sector is coupled to the Standard
Model sector through electroweak interactions and possibly Yukawa couplings, if allowed by the
quantum numbers. Differently from technicolor and composite Higgs models, we require that
the dark sector dynamics does not break the Standard Model gauge group, so that the new
strong dynamics plays no role in electroweak symmetry breaking, which we describe through the
ordinary Higgs mechanism. To stress the difference we shall refer to the new gauge interaction as
dark colour.

We shall focus our attention on the dark matter candidate and on phenomenological bounds
deriving from cosmological observations. However, we stress that these bounds are relevant also
in the case in which the dark sector provides an extension of the Standard Model aimed to
address an issue different from the nature of dark matter.

Schematically, the general framework we shall be considering is the following:

◦ A non-Abelian gauge theory with gauge group GDC = SU(N)DC (dark colour)

◦ Fermions (dark quarks) charged under both GDC and GSM

◦ No additional fundamental scalar fields

◦ Cancellation of the gauge anomalies in order to have a consistent and renormalizable
quantum field theory

◦ Most general renormalizable lagrangian, including gauge interactions and Yukawa couplings
with the Higgs field, if allowed by the quantum numbers

Models with composite dark matter have attracted some attention in the literature in
the recent years and have been realised in a number of different contexts and with different
phenomenological aims (representative example are the references [1, 27–30], for a review see
reference [2]).

The vast majority of the models that have been proposed realise the framework of vectorlike
confinement [31], that we shall briefly review in the next section. These models provide, more
generally, a viable scenario for physics beyond the Standard Model and could be relevant also for
phenomenological problems different from dark matter, such as flavour anomalies, unification or
the strong CP problem.
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2.3 Vectorlike confinement

Let us define some terminology. A representation r of a group G is said to be real if it is unitary
equivalent to its complex conjugate, i.e. if its generators satisfy the relation

(iT a)∗ = SiT aS−1

or equivalently
T Ta = −STaS−1 (2.1)

where S is a unitary matrix. If S∗S = 1, or equivalently ST = S, the representation is strictly
real and it is possible to choose a base in which the generators T ′a are purely imaginary and
antisymmetric matrices. If S∗S = −1, or equivalently ST = −S, the representation is called
pseudo-real. If the condition 2.1 is not satisfied, the representation is called complex.

Let us consider the fermion content organised such that all the fields are left-handed Weyl
fermions.

We shall refer to a model as real if the fermions can be organised in a (reducible) representation
of the group G which is real. This class of models includes the following subclasses:

◦ a model is vectorlike if for each irreducible representation there is a corresponding complex
conjugate representation. This is equivalent to say that the model can be described in
terms of Dirac fermions.

◦ a model is strictly (pseudo) real if all the irreducible representations are strictly (pseudo)
real.

We shall refer to a model which is not real as chiral or complex.
Many of the models studied in the literature on composite dark matter realise the framework

known as vectorlike confinement [31]. New fermions are introduced and assumed to be vectorlike
under the dark gauge group, transforming in the fundamental (plus anti-fundamental) represen-
tation of GDC ; correspondingly, they are assumed to be real under GSM and globally real under
GDC × GSM. To be concrete, for GDC = SU(N)DC, the (Weyl) fermion content is

Ψ =

Ns⊕
i=1

[
(N, ri) +

(
N̄ , r̄i

)]
(2.2)

where N and N̄ are the fundamental and anti-fundamental representations of SU(N)DC respec-
tively and ri is a generic irreducible representation of GSM. This is equivalent to say that the
new fields are Dirac fermions transforming in the fundamental of GDC and in the ri representation
of GSM.

Gauge anomaly cancellation is automatic in this scenario since the model is assumed to be
real under GDC × GSM (see section 3.2 for a discussion).

The SM fields are singlet under GDC and at the renormalizable level they interact with the
dark sector only through gauge interactions and Yukawa couplings with the Higgs field - if allowed
by the symmetries of the model, depending on the quantum numbers.
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Since the dark sector is real under GSM × GDC, explicit mass terms are allowed in the
renormalizable lagrangian, without involving the Higgs sector. There are then Ns free mass
parameters in addition to the dark colour scale ΛDC, where 2Ns is the number of distinct
irreducible representations under GSM × GDC , paired in couples to give Dirac fermions.

The fermion content is assumed to be such that the theory is asymptotically free and
confining in the infrared, with confinement scale ΛDC. If the dark quarks have a mass lower
than the confinement scale, this model corresponds to a QCD-like theory with NDC colours
and Nf =

∑Ns
i=1 dim(ri) flavours, where the sum is restricted to the representations with mass

MQ〉 < ΛDC.
There is then an approximate chiral symmetry, which becomes exact in the massless limit.

At the classical level the flavour group is

GF = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A (2.3)

However, the factor U(1)A is anomalous under GDC and is thus explicitly broken at the quantum
level. Therefore we are left with

GF = SU(Nf )L × SU(Nf )R × U(1)V (2.4)

The dynamics is then assumed to be analogous to QCD: chiral symmetry breaking occurs due
to the formation of quark condensates; SU(Nf )L × SU(Nf )R is broken to SU(Nf )V and each
broken generator is associated to a Goldstone boson. The chiral condensate associated to dark
colour could in principle lead to a spontaneous breaking of the electroweak symmetry, in contrast
with our requirement. However, the choice of real representations under GSM ensures that there
is always an orientation for the condensates such that they are electroweak singlets. This is
expected to be dynamically preferred [32,33].

If the flavour group was an exact symmetry group, the Goldstone bosons would be massless
scalars; however, the explicit breaking of the flavour group induced by the dark quarks mass
term induces a mass for these scalars, which in this case are usually called pseudo-Goldstone
bosons. Furthermore, dark colour confinement ensures that asymptotic states are singlets of GDC
and thus composite hadronic states. As for QCD, these include mesons, baryons and glueballs.

The low energy dynamics can be efficiently described by means of chiral effective lagrangians
and chiral perturbation theory techniques, valid in the regime E � ΛDC, similarly to what is
done in Quantum Chromodynamics.

The lowest lying states are dark pions with a mass of order Mπ ≈
√
MQΛDC. Dark glueballs

have a mass of order MΦ ∼ ΛDC, while dark baryons mass scales with the number of dark colours
MB ≈ NDCΛDC.

The unbroken flavour group

HF = SU(Nf )V × U(1)V

includes a U(1)V factor which corresponds to dark baryon number conservation. This symmetry
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ensures the stability of the lightest dark baryon, which (if neutral) can be a valid dark matter
candidate.

Summarising, the underlining assumptions of the models realising vectorlike confinement are:

◦ Vectorlike model under GDC ; dark quarks are Dirac fermions in the fundamental represen-
tation of GDC ;

◦ Real representation (vectorlike, strictly real or pseudo-real) under GSM;

◦ Real representations under GDC × GSM;

◦ Light dark quarks (MQ < ΛDC) and chiral symmetry breaking as in QCD;

◦ The dynamics is confining and the spectrum is similar to the one of QCD;

◦ The confinement scale is above the electroweak scale.

From these assumptions some of the properties we require for our dark sector follow directly:

◦ GDC anomaly cancellation;

◦ GSM anomaly cancellation;

◦ Dynamics does not break GSM;

◦ Mass terms arise prior to electroweak symmetry breaking;

◦ Accidental symmetries ensure the stability of dark baryons.

2.3.1 Accidental Composite Dark Matter

The phenomenological implications of composite dark matter models based on the framework of
vectorlike confinement have been explored in [34].

Under the following two additional assumptions:

◦ partial SU(5) unification;

◦ the SM gauge couplings have no Landau poles below MPl;

the authors provide a complete list of dark matter models and study their phenomenology.
If the relic density is produced thermally (through a mechanism that we shall review in

chapter 5), in order to reproduce the dark matter relic abundance dark baryons should have a
masses of orderMDM ∼ 100TeV. We stress that even though the dark matter candidate is weakly
interacting, i.e. it is the neutral component of an electroweak multiplet, it is not a standard
WIMP. Indeed, its relic density is not set by the rate of annihilation in Standard Model particles
through electroweak interactions but by the annihilation rate in dark pions, which in turn decay
in Standard Model particles. Since this process is mediated by dark color interactions, the cross
section is much larger, requiring an higher mass for the dark matter candidates.

Altogether, these models provide a well motivated and rich phenomenology for a dark sector.
The main features can be summarised as follows:
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◦ Rich phenomenology at scales accessible by present or near future experiments (collider,
direct, indirect);

◦ Anomaly cancellation: extension of the fermionic content in a coherent way;

◦ Flavour and EW precision tests limits avoided in a simple way;

◦ Composite dark matter candidates stable thanks to accidental symmetries, similarly to
what happens in the Standard Model for the proton;

◦ May improve coupling constants unification.

2.4 Beyond vectorlike confinement

Models realising vectorlike confinement represent an interesting possibility for a composite dark
sector. However they are based on a quite restrictive set of assumptions, and represent a small
subset of the possible gauge theories. We want to understand what are the other classes of gauge
theories with a different phenomenology that could be viable models for a composite dark sector.

Relaxing this assumption we consider models in which the field content is given by Weyl
fermions transforming under generic irreducible representations of SU(N)DC. To be concrete, we
shall focus our attention on models built using representations with up to two indices.

The models need not to be necessarily vectorlike nor real. An interesting possibility is that of
chiral models, which we shall analyse in more detail in chapter 3. If this is the case, however, the
cancellation of gauge anomalies is no longer ensured. In order to have a consistent theory we
must impose this further constraint that gives non-trivial restrictions on the possible choices of
representations of the gauge group.

Moreover, we require that the infrared dynamics does not break the Standard Model gauge
group. Indeed, the formation of condensate could induce a dynamical breaking of the Standard
Model gauge group GSM, producing a technicolor model. We are interested in the opposite case
and this requirement gives again a non-trivial condition.

Lastly, we must check that the physical spectrum and the phenomenology are compatible
with the experimental observations.

Summarising, we shall work under the following assumptions:

◦ Weyl spinors in up to two indices irreducible representations of SU(N)DC and similarly for
GSM;

◦ Models not necessarily vectorlike;

◦ UV: GDC anomaly free;

◦ UV: GSM anomaly free;

◦ UV: Renormalizable lagrangian;

◦ UV: No Landau poles at low energy for the gauge couplings;
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◦ IR: the dark sector dynamics does not break GSM;

◦ IR: There are no massless or ultra-light states in conflict with experimental observations.

We can identify two broad categories of models realising a dark sector with composite dark matter,
depending on whether the strong dynamics induces the formation of fermionic condensates (and
thus the spontaneous breaking of the global symmetry group) or not.

The first class comprises the familiar case of models realising vectorlike confinement and,
more generally, of models with fermions transforming as real representations under GDC × GSM
(not necessarily vectorlike), which have a dynamics qualitatively similar to the one discussed in
the previous section.

Models with a complex (reducible) representation under GDC × GSM (i.e. chiral models) and
no additional fundamental scalar fields are expected to break dynamically the gauge group,
through the formation of condensates. This scenario of is somehow peculiar, and can feature a
dynamics much different than the one of models with vectorlike confinement. Chiral models arise
naturally in the context of Grand Unified Theories, and the Standard model itself is a chiral
gauge theory. We shall discuss the motivations for considering this class of models as a dark
sector and some aspects of their dynamics in chapter 3.

The second class includes models with dark quarks heavier then the confinement scale, that
have been recently considered [35], and models in which the dark colour dynamics has an infrared
fixed point. Models with infrared fixed points have been considered in the context of technicolour
models that try to explain the dynamics of the electroweak symmetry breaking [36]. In this work
we shall analyse the possibility that a dark sector is a gauge theory with an infrared conformal
dynamics, broken by the presence of dark quarks mass terms. Differently from technicolor we
consider the case in which the dynamics does not break the Standard Model gauge group. We
analyse this scenario in chapters 4 and 5, both from the point of view of model building and
phenomenology.



Chapter 3

Chiral Models

We want to understand if a model with chiral field content can be a valid framework for a dark
sector. We restrict our attention to dark sectors with a simple gauge group, and to unitary gauge
groups SU(N)DC in particular.

In section 3.1 we give an overview of the general properties of chiral models and discuss some
additional motivations that explain why this class of models could be interesting. Subsequently,
in 3.2, we review the concept of anomaly and summarise the conditions that a gauge theory
must satisfy in order to be anomaly free and thus consistent. ’t Hooft anomaly matching is
discussed and exemplified through applications to the Standard Model, that give a different
perspective on some well-known facts. In section 3.3 we analyse the dynamics of models with a
chiral field content under GDC and discuss some model building issues on what are the necessary
conditions in order to have a model that does not break GSM dynamically. In the last section
(3.4) we present a general argument based on ’t Hooft anomaly matching that explains why, and
under which assumptions, chiral models have massless asymptotic states in the infrared. We
then provide a brief overview of some of the mechanisms that can induce a mass term for the
would-be massless particles.

3.1 General properties

A chiral model a model in which fermionic fields1 transform in a complex (reducible) representation
of the gauge group GDC×GSM. In physical terms this translates in the condition that the fermions
cannot have explicit mass terms.

An appealing feature of chiral dark sectors is that, in absence of elementary scalar fields
charged under dark colour, they are characterised by a unique energy scale, ΛDC, which is
generated dynamically through dimensional transmutation.

In this scenario, the masses of all the asymptotic states in the dark sector arise dynamically
from the scale ΛDC induced by the dark gauge interactions; furthermore they are naturally small
with respect to the cut-off of the theory (e.g. the Planck scale). The small value of the mass is

1We describe our theory in terms of left-handed fermionic fields only; right-handed fields can be obtained by
charge conjugation ψR = iσ2ψ

∗
L.

21
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not only technically natural2 but a consequence of the dynamics.
Indeed, if all the dark quarks transform in complex representations there are no explicit mass

terms. Therefore, all the masses of the asymptotic states in the dark sector arise dynamically
from the scale ΛDC induced by the dark gauge interactions. This is an attractive scenario since
there would be a single dynamical mass scale, with the masses of the states in the dark sector
all related among each other and dark matter stability ensured by accidental symmetries of the
renormalizable gauge theory.

Chiral models play a central role in high energy physics. A well-known example of a
chiral gauge theory is the Standard Model itself: the fermions have no explicit mass term in
the lagrangian and acquire a mass only through the Yukawa interaction with the Higgs field,
after electroweak symmetry breaking. Also in this case, the mass of the fermions is generated
dynamically and is of the order of the Higgs vacuum expectation value or smaller, leading to
naturally light particles.

In the context of grand unified theories, chiral models play a central role. Indeed, if the
Standard Model gauge group is unified to a simple gauge group at an high energies, the model
must be a chiral theory. This is just what happens in the case of Georgi-Glashow SU(5) grand
unification theory [37] in which the standard model fermions are organised in two irreducible
representations: an antisymmetric 10 and an anti-fundamental 5̄, each one coming in three
families.

It is then natural to explore the possibility that the dark sector is a chiral theory. This
alternative has not received much attention in the literature on dark sectors and can lead to a
phenomenology vastly different from the one of models based on real representations.

Models with a non-Abelian gauge group SU(N) with chiral representations were studied
in the context of technicolor theories [38, 39], where they were proposed as a way to generate
dynamically a hierarchy of mass scales for quarks and leptons.

As for dark sector model building, chiral models have been considered recently by a few
authors. The case of an abelian dark sector with a chiral U(1) broken through the Higgs
mechanism by charged scalars has been considered in [40–43].

Recently, Nomura et al. have considered a model with a strongly interacting chiral dark
sector [44,45]. Their model is based on a non-simple gauge group SU(N)DC× U(1) with fermions
transforming in representations real under SU(N)DC and U(1) but complex under the product;
no fundamental scalar fields are introduced and the abelian U(1) factor is broken dynamically by
the dark sector. The dark fermions are singlets under the Standard Model, and the two sectors
are coupled only through vector boson mixing of the Z ′ with hypercharge.

Chiral dark sectors have been considered, with a different perspective, also in the context of
models with a mirror world [46,47]. In these models the dark sector is a copy of the Standard
Model with the same particle content and the two sectors can communicate gravitationally
and through the Higgs portal. Mirror baryons, stable thanks to the accidental baryon number
conservation, can account for dark matter.

2A parameter with a small value is said to be technically natural if in the limit in which it vanishes the model
acquires an enhanced symmetry.
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In this work we study the following alternative, that has not been considered yet in the
literature: a chiral dark sector with non-Abelian gauge group, featuring a strongly interacting
dynamics in the infrared, and with fermions charged under both GDC and GSM.

Chiral models can be classified in four different classes, according to the reality properties of
the representations under GDC and GSM.

Table 3.1: SU(N) irreps with up to two indices.

GDC GSM GDC × GSM
1) Real Real Complex

2) Real Complex Complex

3) Complex Real Complex

4) Complex Complex Complex

We shall focus on models in which the fermions in the dark sector are charged under the
Standard Model but the dark gauge dynamics dominates, i.e. the dark sector becomes strongly
coupled at a scale ΛDC � mh. We do so because we are interested in understanding if there are
viable alternatives for dark sectors with fermions interacting with the Standard Model. The dark
sector dynamics is expected to induce a mass for the composite states of order ΛDC (unless they
are Goldstone bosons or unconfined fermions). If we require ΛDC � mh, the confined composite
resonances (in particular the ones charged under GSM) will be heavier than the electroweak scale,
explaining why they have not been observed yet.

In this scenario, the formation of condensates of dark fermions due to the gauge dynamics
could induce a dynamical breaking of the electroweak symmetry (as in technicolor models). We
focus on the case in which the GSM is left unbroken by the dark sector dynamics, i.e. they are
not technicolor theories, but theories describing a dark sector.

As we discuss in the next paragraph, models realising the scenarios 1) and 2) are incompatible
with this last request; the rest of the chapter will focus on models with complex representations
under GDC , realising the scenarios 3) and 4).

Models with fermions real under GDC

Models in the first two classes, i.e. real under GDC but chiral under GSM or the product GDC×GSM,
cannot be compatible with the requirement that the strong dynamics of GDC does not induces a
dynamical breaking of GSM.

Let us first review what are the possible patterns of chiral symmetry for SU(N) gauge theories
with different representations.

For vectorlike models with Nf Dirac fermions transforming in a complex representation,
the global symmetry group is SU(Nf )L × SU(Nf )R. The pattern of chiral symmetry breaking,
analogous to the one realised in QCD, is

SU(Nf )L × SU(Nf )R × U(1)V −→ SU(Nf )V × U(1)V
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This pattern of symmetry breaking describes extremely well the observations of hadronic physics,
providing a powerful principle to classify mesons and baryons. It has been proven theoretically [48]
that the vectorial subgroup SU(Nf )V × U(1)V cannot be broken spontaneously, and since this
pattern is the one that leaves unbroken the largest possible subgroup, one can safely conclude
that it is the only possible pattern of symmetry breaking in vectorlike theories. This has been
confirmed by lattice calculations.

Let us now consider the case of models with real representations. We consider a model
with 2N massless Weyl fermions, transforming as a real representation. In this case the global
symmetry is enhanced to SU(2N). The reality condition for the representation can be expressed
as

S−1(iT a)S = (iT a)∗

where S is a unitary matrix. For a strictly real representation S is symmetric, i.e. ST = S, while
for a pseudoreal representation S is antisymmetric, i.e. ST = −S. Exponentiating this relation
we have

S−1US = U∗

and using the unitarity of U and S we obtain

UTS−1U = S−1

We want to find a matrix Σ such that the condensate

〈ψTΣψ〉 6= 0

is a singlet of the gauge group. Choosing Σ = S−1 we see that this condition is automatically
satisfied. Since the inverse of a (anti)symmetric matrix is (anti)symmetric, from the properties
of S we conclude that

◦ Σ is symmetric for a strictly real representation;

◦ Σ is antisymmetric for a pseudoreal representation;

Assuming that the dynamics leaves unbroken the maximal flavour subgroup [32,33], we obtain
that:

◦ for a model with 2N Weyl fermions transforming in a strictly real representation the
condensate is Σ is proportional to the identity and the pattern of symmetry breaking is

SU(2N) −→ SO(2N)

◦ for a model with 2N Weyl fermions transforming in a pseudoreal representation the
condensate is Σ is a symplectic matrix and the pattern of symmetry breaking is

SU(2N) −→ Sp(2N)
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For pseudoreal representations the matrix Σ has necessarily even dimension, while for strictly
real representations it is possible to extend the conclusion to system with an arbitrary number of
Weyl fermions Nw.

A generalisation of the Vafa-Witten theorem has been proven by Kosower [49], showing
that the unbroken group suggested by the maximal flavour subgroup criterion cannot be broken
spontaneously. Lattice simulations of models with real representations have confirmed these
symmetry breaking patterns [50,51].

Having analysed what is the pattern of flavour symmetry breaking for models with real
representations, we can now prove the following lemma: a model with field content real under
GDC but chiral under GDC × GSM and ΛDC � mH leads to dynamical breaking of GSM.

Indeed, since the dark colour dynamics dominates, dynamical breaking of the (approximate)
flavour symmetry group occurs, realising one of the patterns described above (i.e. the condensate
involves all the dark quarks). Being a singlet under GDC, the condensate cannot be a singlet
of GSM otherwise all the dark quarks could have an explicit mass term in the renormalizable
lagrangian and the theory would not be chiral.

3.2 Anomalies

Before dealing with the dynamics of a chiral model, we shall review the concept of anomaly and
some of its applications. We shall use the results of this section in our analysis of chiral dark
sectors.

An anomaly is an obstruction to the realisation of a classical symmetry at the quantum level:
one of the signals of the quantum violation of the symmetry is the appearance of anomalous
terms in the Ward-Takahashi identities.

Anomalies provide a tool that can be used to make concrete prediction on the non-perturbative
dynamics of quantum field theories.

First of all, the presence of an anomaly in a gauge theory signals an inconsistency. In the case
of chiral gauge theories, the request of gauge anomaly cancellation induces strong constraints
on the structure of the model, that must be satisfied in order to have a consistent theory. For
instance, the cancellation of gauge anomalies in the Standard Model provides a strong consistency
check.

Moreover, anomalies are an infrared effect, in the sense that only massless particles can
contribute to the anomaly. As a consequence, they can be used to obtain information on the
infrared structure of the gauge theory. In particular, through the so called anomaly matching,
it is possible to predict some of the properties of the low energy effective theory describing the
model in the infrared, even if the dynamics is strongly interacting and non-perturbative.

Finally, they are of great importance also from the phenomenological point of view: in QCD
they explain the decay of the neutral pion into two photons, predicting a lifetime in excellent
agreement with the experimental observations.

Let us consider a field theory described by an action Scl and assume that there is a continuous
symmetry group G that leaves the classical action invariant: δScl = 0.
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By Noether theorem there is a conserved current jµ(x) which satisfies, at the classical level,
the continuity equation ∂µjµ = 0. This equation expresses a local conservation law of the classical
system. At the global level, if the symmetry is linearly realised and if the fields are localised, this
implies the conservation of the charge associated to this current3

Q =

∫
d3xj0(~x, t)

d

dt
Q(t) = 0

The symmetry G is said to be anomalous if it is violated at the quantum level. If there is
an anomaly, the quantum analogue of the continuity equation4, 〈∂µjµ〉 = 0, receives quantum
corrections, giving rise to anomalous Ward identities such as

〈∂µjµ〉 = A

where A is referred to as the anomaly.
If G represents a global symmetry group, then the anomaly results simply in an anomalous

non conservation at the quantum level of the Noether current associated to the symmetry.
On the other hand, if G is a gauge group, the presence of an anomaly would indicate an

inconsistency of the theory. Indeed, a gauge invariance is a redundancy in the degrees of freedom
we our using to describe our system. The physical degrees of freedom are in the quotient of the
space of fields by gauge transformations, i.e. gauge invariance is required to remove unphysical
degrees of freedom. Therefore, in order to have a consistent gauge theory, it is necessary to
require the cancellation of gauge anomalies.

3.2.1 Chiral anomaly

To be concrete, let us consider QED in four dimensions with one massless Dirac fermion ψ with
unit charge, described by the lagrangian

L = −1

4
FµνF

µν + iψ̄Dµγ
µψ

We focus our attention to the case in which there is a dynamical fermion in a background with
fixed electromagnetic fields. In the path integral formulation all the correlation functions can be
computed by taking derivatives of the generating functional

Z[η, η̄] =

∫
DψDψ̄eiS+i

∫
η̄ψ+i

∫
ψ̄η

Let us consider axial transformations ψ → eiαγ5ψ. This is a global symmetry group of the
classical action since it leaves unchanged the lagrangian. Considering a local transformation

3Otherwise, if the symmetry in non-linearly realised (i.e. there is spontaneous symmetry breaking) the charge
Q is not a well defined quantity and it is not a good quantum number.

4We indicate as 〈·〉 the expectation value on the vacuum of the operator in bracket.
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associated to the group we have

δS =

∫
d4x(∂µα(x))jµ5 (x)

where jµ5 (x) = ψ̄γµγ5ψ is the Noether current associated to the classical symmetry. Defining
carefully the integration measure in the path integral, following the approach of Fujikawa [52],
one finds that in presence of massless fermion the integration measure is not invariant under the
axial transformation:

DψDψ̄ −→ ei
∫
d4xα(x)A(x)DψDψ̄

where

A(x) = − e2

16π2
εµνρσF

µνF ρσ

The path integral transforms as∫
DψDψ̄eiS −→

∫
DψDψ̄ei

∫
αAeiS+iδS '

∫
DψDψ̄eiS

[
1 +

∫
d4x(α(x)A(x) + (∂µα(x))jµ5 (x))

]
Integrating by parts and requiring the invariance of the path integral under change of variables,
for an arbitrary parameter α(x), we arrive at

〈∂µjµ5 〉A = − e2

16π2
εµνρσF

µνF ρσ (3.1)

where we are working with a fixed background field Aµ(x) and dynamical fermions, so that the
expectation value is given by

〈∂µO〉A =

∫
DψDψ̄ O eiS[ψ,A]∫
DψDψ̄ eiS[ψ,A]

The anomaly can be computed directly by means of perturbation theory evaluating the triangle
diagram with a loop of fermions, two external gauge bosons and an axial current insertion, as
was first done by Adler [53], and Bell, Jackiw [54].

From a more rigorous point of view, the anomaly can be seen as a consequence of the
regularisation procedure [55]. The current jµ5 = ψ̄(~x, t)γµγ5ψ(~x, t) is ill defined since it involves
the product of two operators at the same point which in general is divergent and needs some
kind of regularisation. It turns out that there is no regularisation procedure consistent both with
U(1)A and U(1)V symmetries; preserving U(1)V gauge invariance gives an anomaly in the axial
current. Through a point splitting regularisation one can define the current as

jµ5 = lim
ε→0

ψ̄(x+ ε/2)γµγ5e
−ie

∫ x+ε/2
x−ε/2 Adx

ψ(x− ε/2)

Computing the divergence and using the Dirac equation, then taking the limit ε→ 0, one obtains
again equation 3.1.

Generalising upon the previous example, one can consider a system of massless fermions
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coupled to a non-abelian gauge theory. For a non-abelian chiral current

jµ5,i = ψ̄γµγ5τiψ

one obtains the anomaly [21]:

∂µj
µ
5,i = − g2

16π2
εµνρσ Tr [τiTaTb]G

µν
a Gρσb (3.2)

Gravitational anomaly

Similar methods can be used to compute the anomaly for the axial current once the fermions are
coupled to gravity [56]. In particular, the fermion triangle with one axial current and two energy
momentum tensors at the vertices has an anomaly

Dµj
µ
5 = − 1

384π2

1

2
εµνρσR

µν
αβR

ρσαβ (3.3)

For a non-abelian chiral current
jµ5,i = ψ̄γµγ5τiψ

the gravitational anomaly is proportional to Tr [τi], which vanishes for currents associated to
SU(N) global groups.

3.2.2 Gauge anomaly cancellation

So far we have discussed the anomalous non conservation of a global axial current in the presence
of external background gauge fields coupled to vectorial currents. In chiral models we deal with
a situation in which the gauge currents are themselves chiral.

For a chiral model we express the lagrangian in terms of left-handed fermionic fields ψLi in a
representation r of the gauge group

L = ψ†Liiσ̄µD
µ
ijψLj + · · ·

with spinor indices suppressed and covariant derivative defined as

Dµ
ij = ∂µδij − igAµa

(
T a(r)

)
ij

Anomaly SU(N)3

The anomaly in the divergence of the gauge current is given by the triangle diagram with the
current at one vertex and the gauge bosons at the other two vertices [21]. It is proportional to

Tr
[
T a(r)

{
T b(r), T

c
(r)

}]
If the representation r is reducible one obtains a sum on the irreducible representations.
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For an SU(N) gauge theory there is a unique totally symmetric three index tensor up to a
constant depending on the irreducible representation, known as the anomaly coefficient

Tr
[
T a(ri)

{
T b(ri), T

c
(ri)

}]
= A(ri)d

abc (3.4)

If a representation is equivalent to its complex conjugate (i.e. it is real or pseudoreal), the
anomaly coefficient vanishes automatically. Indeed one has(

iT a(ri)

)∗
= S

(
iT a(ri)

)
S−1 =⇒

(
T a(ri)

)T
= −S

(
T a(ri)

)
S−1

from which it follows that A(ri)d
abc = −A(ri)d

abc and so A(ri)d
abc = 0.

Some gauge groups such as SU(2) have only real or pseudoreal representations, therefore the
coefficient dabc is identically zero and there is no anomaly.

For SU(N) gauge groups with N ≥ 3, in order to have a consistent gauge theory it is
necessary to have a cancellation between the anomalies of the different representations, therefore
we obtain the condition ∑

i

A(ri) = 0

Since the anomaly in the current is caused by the gauge bosons to which the current itself is
coupled, this anomaly is referred to as the SU(N)3 anomaly.

SU(2) global gauge anomaly

Gauge anomalies are called local if they are associated with elements connected to the identity
and global if they are associated to gauge transformation that cannot be transformed continuously
into the identity (so called large gauge transformations).

Witten has shown in [57] that theories based on a gauge group with non-trivial fourth homotopy
group have an additional consistency condition arising from the transformation properties of the
generating functional Z under large gauge transformations.

As a consequence, an SU(2) gauge theory5 must have an even number of doublets in order
to be consistent. More generally it must have an even number of fermions transforming as SU(2)

representations of even dimension, while the number of odd dimension representations can be
arbitrary.

No further constraint arises for SU(N) gauge theories for N ≥ 3, nor for O(N) gauge theories
with N ≥ 6 since they have trivial fourth homotopy group. Non trivial conditions arise only for
Sp(N) gauge theories which have π4(Sp(N)) = Z2 [57].

Mixed gauge and gravitational anomalies

If the gauge group is not a simple group, mixed anomalies, with one gauge boson at one vertex
and two background external gauge bosons (associated to the other factor of the gauge group),
must be taken into account.

5The fourth homotopy group of SU(2) is π4( SU(2)) = Z2 [57].
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The mixed anomalies SU(N) SU(M)2 and SU(N) U(1)2 are automatically zero since they
are proportional to the trace of the generators of SU(N), which vanishes identically.

For U(1) SU(N)2 one has the condition

Tr [QTaTb]

where Q is the charge operator regarded as a matrix acting on left-handed fermionic fields. We
note that only fermions charged under both the gauge groups contribute to the anomaly.

Similarly, coupling our model to gravity, for consistency we must include the cancellation of
the gravitational anomalies SU(N)grav2 and U(1)grav2 [56]. The first vanishes identically as
described before, while the second gives the condition

TrQ = 0

where the trace is on left-handed massless fermions.

3.2.3 ’t Hooft anomaly matching

The following argument has been put forward by ’t Hooft in [58] and uses anomalies to gain
information on the non-perturbative dynamics of a strongly interacting gauge theory.

Let us consider an asymptotically free SU(N) gauge theory with (massless) chiral fermions
and a global symmetry group G, free of mixed anomalies G · SU(N)2 (i.e. G is valid even
in the presence of background gauge fields). Assume that there is an anomaly G3, which in
the ultraviolet picture can be computed through a triangle diagram with massless elementary
fermions running in the loop. In the infrared, whatever the strong dynamics gives, the anomaly
must be exactly reproduced if computed in terms of the massless particles of the exact physical
spectrum (which can be either fermions or Goldstone bosons).

This can be understood in the following way. Imagine that we introduce a set of massless
spectator fermions that are gauge singlets but contribute to the G3 anomaly compensating exactly
the existing anomaly. Now the group G is completely free of anomalies and we can gauge it,
with a weak coupling so that the original interaction dominates the dynamics. Running in the
infrared, the original theory flows towards a strong coupling regime (in QCD, for instance, the
theory confines at low energies) and the original massless fermions can be replaced by a different
set of asymptotic states (baryons and mesons in QCD). The spectator fermions, on the contrary,
are gauge singlets and do not take part to the strong dynamics; therefore, they give the same G3

anomaly as before. Since we started with a consistent theory in the ultraviolet, the effective low
energy theory must be consistent too and so there must be massless states in the strong sector
that cancel again the G3 anomaly.

The argument does not depend on the value of the gauge coupling constant of the group G
(provided it is weak), therefore we can take it to zero. The spectator fermions are now completely
decoupled and the conclusion on the existence of massless states must be true also in the theory
in which G is a global group and there are no spectator fermions.

In the low energy effective theory the anomaly can be reproduced by massless fermions
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(composite fermions if the theory is confining) or Goldstone bosons. In particular, in the effective
theory describing the Goldstone bosons the anomaly is reproduced by the Wess-Zumino-Witten
term [59,60].

The core of the argument resides in the fact that we can add spectator fermions that do not
interact under the strong dynamics but carry an anomaly under G3, in such a way to cancel the
existing flavour anomaly. The same line of reasoning can be applied to the gravitational anomaly
G · grav2, since the spectator fermions are coupled gravity, as was pointed out in [56].

This observation results in a second, independent, consistency condition: for any conserved
global charge Q, the trace Tr [Q] must be equal if computed on the elementary left-handed
fermions or on the fermions of the physical spectrum, unless the corresponding U(1) symmetry
is spontaneously broken. Since only massless fermions can contribute to the anomaly, a non-zero
value for Tr [Q] implies the existence of massless states, either fermions or Goldstone bosons from
the spontaneous breaking of the symmetry.

A rigorous derivation of t’Hooft anomaly matching from general principles (analyticity and
unitarity) has been provided by Coleman and Grossman [61].

Massless QCD example

Originally, the anomaly matching was used to constrain the infrared dynamics of QCD, specifically
to show that spontaneous chiral symmetry breaking is unavoidable.

Let us consider QCD with three flavours of massless quarks (we are working in the so
called chiral limit mu = md = ms = 0). This theory has the global symmetry group G =

SU(3)L × SU(3)R × U(1)V , free of anomalies under the colour group. The U(1)A factor is
anomalous under the gauge group GDC and so it is explicitly broken. The global group has
anomalies SU(3)2

L,R · U(1)V and SU(3)3
L,R. Assuming that QCD confines and that the global

group is linearly realised one has that the anomalies should be balanced by massless composite
fermions (baryons). However one can show (see [21] for a complete proof) that the anomaly
matching condition cannot be satisfied by composite fermion in QCD with three flavours of
massless quarks and it is possible to conclude that the spontaneous breaking of the global
symmetry group is necessary.

Neutrino masses

We can apply anomaly matching considerations to the Standard Model. The theory has a global
flavour symmetry group GF = ( SU(3)× U(1))5, one factor for each irreducible representation:
left-handed quarks QL and leptons LL, right-handed quarks UR, DR and right-handed electrons
ER.

The global symmetry is broken explicitly by the Yukawa interaction with the Higgs field, so
that the anomaly matching cannot be applied directly to the group GF . However, there are two
unbroken accidental U(1) symmetries, namely baryon number

B =
1

3
(quarks), B = 0 (leptons)
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and lepton number
L = 0 (quarks) L = 1 (leptons)

Both these symmetries are anomalous under the electroweak symmetry group, with anomaly

∂µj
µ
B = ∂µj

µ
L =

3

32π2
g2

2 εµνρσW
µν
i W ρσ

i

The two anomalies cancel if we consider the linear combination (B − L):

B − L =
1

3
(quarks) B − L = −1 (leptons)

Therefore the symmetry U(1)B−L is a valid global symmetry free of gauge anomalies (while
U(1)B+L is anomalous and thus broken at the quantum level).

To apply ’t Hooft anomaly matching, let us consider the global anomaly U(1)3
B−L. If we do

not include right-handed neutrinos we obtain a non-zero anomaly:

Tr
[
Y 3
B−L

]
= 3
(
2Y 3

Q − Y 3
u − Y 3

d

)
+
(
2Y 3

L − Y 3
e

)
= 1 6= 0

The existence of this anomaly, together with the fact that the symmetry is not spontaneously
broken, implies the existence of massless fermions. In the Standard Model these correspond
to the left-handed neutrinos, which in fact are very light states that have been believed to be
massless for long time.

In recent years, the observation of neutrino oscillations have suggested that the neutrinos do
have a mass different from zero. In order to have a consistent theory, the Standard Model must
be extended, and there are two possibilities:

◦ the anomaly in the (B − L) current is cancelled by new particles. This is the case, for
instance, if right-handed neutrinos are introduced, giving mass to both left and right-handed
neutrinos through the Higgs mechanism

◦ the global symmetry U(1)B−L is explicitly broken. This can be obtained, for instance,
taking into account non-renormalizable operators: at the level of dimension 5 there is a
single operator consistent with Lorentz invariance and the Standard Model gauge symmetry:

O5 = Mν,ij

(
L̄iHc

)(
LjHc

)†
This operator induces an explicit breaking of the lepton number (and of U(1)B−L) and gives
mass to the left-handed neutrinos, once the Higgs field acquires its vacuum expectation
value.

3.3 Models chiral under SU(N)DC

The dynamics of a chiral dark sector, with fermions transforming in a complex reducible
representation of SU(N)DC, is expected to be much different from the one of the models based
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on real representations.
It has been suggested that a composite Lorentz scalar operator (a fermion bilinear) may

acquire a vacuum expectation value, inducing the dynamical breaking of the gauge group and
possibly also of the global (flavour) symmetry group of the original lagrangian. Indeed, in a chiral
model it is not possible to write a mass term for the fermions, and this is equivalent to say that
every Lorentz scalar bilinear in the fermions cannot be a singlet of the dark colour gauge group.

Once the original gauge group SU(N)DC is broken to a subgroup SU(N)′DC, one has to
decompose the representations of the original fermions in representations of the unbroken gauge
group. If the model is still chiral the process can repeat, generating a cascade of gauge symmetry
breakings with several energy scales. Since the running of the gauge coupling is logarithmic,
the separation of scales can be exponential: therefore it could be possible to generate in this
way a hierarchy of scales in a natural way. The chain of symmetry breaking ceases when we are
left with a real model with respect to the unbroken dark gauge group, which then experience
a confining dynamics; otherwise the dynamics can lead to a complete breaking of the original
gauge group. This scenario has been proposed by Dimopoulos, Raby and Susskind in [38] and is
referred to as tumbling.

In order to predict what is the pattern of breaking of the dark color group one needs a criterion
for which bilinear Lorentz scalar acquires a vacuum expectation value, i.e. what is the form
of the condensate. The maximally attractive channel (MAC) criterion [38] has been proposed
and can be phrased as follows: the bilinear scalar operator that acquires a non-zero vacuum
expectation values is the one corresponding to the most attractive channel in the single gluon
exchange interaction among dark quarks. The interaction between two dark quarks transforming
as irreducible representations r1 and r2 depends on the composite representation r′ ⊂ r1 × r2.
For each channel, the single gluon exchange approximation gives a potential

V (r) =
g2

2r

(
C

(r′)
2 − C(r1)

2 − C(r2)
2

)
The most attractive channel corresponds to the one for which the factor

(
C

(r′)
2 − C(r1)

2 − C(r2)
2

)
is negative and large.

The pattern of condensation obtained through the MAC criterion agrees with that predicted
independently through instantons methods [39].

An alternative to tumbling has been suggested by Peskin [39]: all the condensates could form
at the same energy scale, with a unique breaking of the gauge group. If this is the case, what
happens is that each irreducible representation forms a condensate in the respective maximally
attractive channel (i.e. all the dark quark form condensates and all the condensates form at the
same scale).

We stress that the previous scenarios are speculative, being based on the assumption that a
Lorentz scalar condensate acquires a vacuum expectation values; no rigorous argument or lattice
simulation confirming clearly these conclusion is available, due to difficulties in putting on the
lattice chiral gauge theories. Some authors have argued [62, 63] that a Lorentz vector condensate
〈ψaσµψ∗a〉 (which can always be a gauge singlet) might form instead of the scalar condensate; in
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this case the gauge group could remain unbroken, while it is unclear if Lorentz invariance would
be spontaneously broken or not [63].

3.3.1 Anomaly cancellation and asymptotic freedom constraints

Let us discuss what are the general constraint that models with a chiral non-Abelian dark sector
must satisfy for consistency.

We consider here models with SU(N)DC gauge group and left-handed Weyl fermions trans-
forming as complex irreducible representations with up to two indices, i.e. fundamental, symmetric
and antisymmetric (and their complex conjugates). For NDC = 3, 4 there are some special cases:
for NDC = 3 the antisymmetric representation is equivalent to the anti-fundamental, while for
NDC = 4 the antisymmetric representation is real and thus equivalent to its complex conjugate.

For simplicity, we assume that there are no subset of fermionic fields which transform in real
(reducible) representations of SU(N)DC, i.e. if there is a field transforming as the representation
r, there are no fields transforming as r̄.

We denote by nF the number of fundamental representations minus the number of anti-
fundamental representations, and similarly for nS and nA.

Asymptotic freedom for SU(N)DC (for a discussion on the running of the coupling constant
and the condition of asymptotic freedom see section 4.1 in the next chapter) requires

|nF |+(NDC − 2)|nA|+(NDC + 2)|nS |< 11NDC (3.5)

Since we are dealing with a chiral model the conditions of gauge anomaly cancellation give
non-trivial constraints. In order to make the notation less cumbersome we discuss first the case
of dark quarks charged under U(1)Y ⊃ GSM only and leave the general case for later.

The condition involves the group theory factor T (r) (Dynkin index) defined as:

Tr
[
T (r)
a T

(r)
b

]
= T (r)δab

where T (r)
a are the generators of the irreducible representation r. Moreover, we denote by dim(r)

the dimension of the representation r. The anomaly coefficient is defined by equation 3.4. Here
we use the convention that A(ri) is definite positive, since we are taking ni already with a minus
sign for conjugate representations.
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Gauge anomaly cancellation than gives the following constraints:

SU(N)3
DC → nFA(F ) + nAA(A) + nSA(S) = 0 (3.6a)

U(1)Y SU(N)2
DC →

|nF |∑
i=1

qFi T (F ) +

|nA|∑
i=1

qAi T (A) +

|nS |∑
i=1

qSi T (S) = 0 (3.6b)

U(1)Y grav2 →
|nF |∑
i=1

qFi dim(F ) +

|nA|∑
i=1

qAi dim(A) +

|nS |∑
i=1

qSi dim(S) = 0 (3.6c)

U(1)3
Y →

|nF |∑
i=1

(qFi )3dim(F ) +

|nA|∑
i=1

(qAi )3dim(A) +

|nS |∑
i=1

(qSi )3dim(S) = 0 (3.6d)

Defining6

qF =

|nF |∑
i=1

qFi qA =

|nA|∑
i=1

qAi qS =

|nS |∑
i=1

qSi

pF =

|nF |∑
i=1

(qFi )3 pA =

|nA|∑
i=1

(qAi )3 pS =

|nS |∑
i=1

(qSi )3

and using the group theory factors listed in table 3.2, equations (3.6) become

nF + nA(NDC − 4) + nS(NDC + 4) = 0 (3.7a)

qF + qA(NDC − 2) + qS(NDC + 2) = 0 (3.7b)

qF + qA
(NDC − 1)

2
+ qS

(NDC + 1)

2
= 0 (3.7c)

pF + pA
(NDC − 1)

2
+ pS

(NDC + 1)

2
= 0 (3.7d)

Using equations (3.7b) and (3.7c), the solutions for qi can be expressed as a one parameter family
of solutions: (

qF , qA = −NDC + 3

2NDC
qF , qS =

NDC − 3

2NDC
qF

)
In particular, for NDC 6= 3, if one of the qi is zero then also the other two must be zero. Moreover,
(qF = pF = 0, qA = pA = 0, qS = pS = 0) is always a solution for every NDC.

Equations (3.5) and (3.7a), together, give a constrain that can be graphically represented as
a polygon in a two dimensional space (for instance nF vs nS , with nA given as a function of the
other two by eq. (3.7a))). Considering dark quarks charged under SU(2)EW and SU(3)c gives
the following further constraints:

◦ it is necessary to have an even number of electroweak doublets due to the SU(2)EW global
anomaly discussed in section 3.2;

◦ the anomaly SU(3)3
c must be zero, giving a constraint analogous to equation 3.6a;

6We define also: qi := 0 if |ni|= 0 and similarly for pi.
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Figure 3.1: Combined bounds on nF and nS given by asymptotic freedom and anomaly cancellation,
for NDC = 3. Anomaly cancellation fixes the number of antisymmetric representations to be nA =
−(nF + nS(NDC + 4))/(NDC − 4).

Table 3.2: Group theory factors for irreducible representations with up to two indices of SU(N).

Irrep Dimension Dynkin index Quadratic Casimir Anomaly Coefficient
dim(R) T(R) C2(R) A(R)

Singlet 1 0 0 0

Fundamental N 1
2

N2−1
2N 1

Adjoint N2 − 1 N N 0

Antisymmetric N(N−1)
2

N−2
2

(N−2)(N+1)
N N − 4

Symmetric N(N+1)
2

N+2
2

(N−1)(N+2)
N N + 4

◦ the mixed anomalies U(1)Y SU(2)2
EW and U(1)Y SU(3)2

c , must vanish, giving constraints
analogous to equation 3.6b.

3.3.2 GSM chiralness

In this section we deal with the following question:

◦ is it possible to have a strongly interacting dark sector with field content chiral under GSM
such that the dynamics does not break GSM?

We have briefly discussed in section 3.1 that the pattern of spontaneous flavour symmetry breaking
for models with real representations under GDC is such that the dynamics always breaks GSM if
the field content is chiral under GSM. For this reason in the literature on strongly interacting
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dark sectors, the fermions are assumed to be real under GSM in such a way that there can be an
orientation of the condensate that preserves GSM.

We want to understand if this condition is still necessary in the case of models chiral under
GDC . The previous line of reasoning does not apply to this case, since now the condensate cannot
be a singlet of GDC , therefore could be a singlet of GSM, depending on the quantum numbers.

We consider models completely chiral under SU(N)DC, with dark quarks transforming as
two indices complex representations of SU(N)DC for a generic NDC, as described in the previous
section.

To understand the dynamics of these models, we need to understand what is the pattern of
symmetry breaking. Differently from the case of models with real representations, for which
robust theoretical and numerical results are available (as discussed in section 3.1), this class of
models is much less constrained on the theoretical ground and no observational or numerical
clues are available. We stress that, in principle, understanding what is the pattern of symmetry
breaking of the model is a well defined question with a unique solution determined by the
dynamics; however, since no robust result is available, we shall make the following assumptions:

◦ the condensate occurs in the maximally attractive channel;

◦ the condensate does not mixes colour and flavour indices;

◦ the condensate preserves the maximal unbroken subgroup;

These assumptions are inspired by the pattern of symmetry breaking observed in models with
real representations; we consider them as reasonable working hypothesis and use them in some
clarifying examples. In order to advocate the viability of a concrete model, a robust analysis on
the pattern of symmetry breaking in these models would be required.

Resting on this assumption we have tried to construct examples of models chiral under both
GDC and GSM, for which the dark sector dynamics leaves unbroken the Standard Model gauge
group. Although we have succeeded in finding examples of models in which at the first step
of the tumbling the condensates can preserve GSM, in our examples the further steps of the
dynamics break GSM.

We have not a conclusive argument proving if this is possible or not; we present here the
examples, sketching the dynamics of the first step of the tumbling.

Models with dark fermions charged under U(1)Y

Let us consider the following model:

Gauge group : SU(3)DC ×U(1)Y

Fields : (6)0 + (3̄)0 + (3̄)0 + (3̄)−9 + (3̄)−5 + (3̄)−1 + (3̄)7 + (3̄)8

The hypercharges are chosen in order to have the minimal model which is chiral and anomaly free
under U(1)Y, and with integer charges. Indeed qS = pS = 0 is trivially verified and qA = pA = 0,
as it can be readily checked (i.e. for each representation family, the sum of the hypercharges and
the sum of the cubes of the hypercharge are both identically zero).
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The model is also anomaly free, asymptotically free and chiral under SU(3)DC. Indeed
equations (3.6) and (3.7a) for nS = 1, nF = −7 and N = 3 give

11N > |nF |+(NDC − 2)|nA|+(NDC + 2)|nS | =⇒ 11 · 3 = 33 > 12 = 7 + 5 · 1
nF + nA(NDC − 4) + nS(NDC + 4) = 0 =⇒ −7 + 1 · 7 = 0

The flavour group is given by U(1)× SU(7).
We assume that chiral symmetry breaking occurs, and that the condensate is given by the

most attractive channel: 6× 3̄→ 3.
Assuming, moreover, that the condensate does not mix flavour and colour indices (there is no

colour-flavour locking), and that the maximal flavour subgroup is preserved (as for QCD), one
has: U(1)× SU(7)→ U(1)× SU(6). Just one linear combination of the dark quarks transforming
in the anti-fundamental representation takes part in the condensate. It is then possible for the
vacuum to choose an orientation such that the condensate has zero charge and U(1)Y is not
spontaneously broken. This orientation is expected to be dynamically preferred through vacuum
alignment as discussed in [32,33].

The gauge group is broken dynamically by the condensate to a residual SU(2)DC . Decompos-
ing the representations of the original gauge group in representations of the unbroken one, we are
left with a model with real representations under GDC (indeed SU(2) has only real representation)
and chiral under U(1), so that the dynamics break GSM at the second step of the tumbling.

The choice of the hypercharges is not unique and it arises in a non trivial way. Due to
hypercharge quantisation one has to find integer solutions to a system of two homogeneous
polynomial equations in order to have anomaly cancellation for the U(1):∑

i

qAi = 0∑
i

(qAi )3 = 0

with the additional condition that there is at least an hypercharge qA1 6= 0 such that qAi 6= −qA1
for each i. Problem of this kind are notoriously difficult to solve. We have found some solutions
numerically, that give alternative models with a dynamics similar to that of the one we just
analysed:

Gauge group : SU(3)DC ×U(1)Y

Fields : (6)0 + (3̄)0 + (3̄)−4 + (3̄)−4 + (3̄)1 + (3̄)1 + (3̄)1 + (3̄)5

Gauge group : SU(3)DC ×U(1)Y

Fields : (6)0 + (3̄)0 + (3̄)−6 + (3̄)−3 + (3̄)2 + (3̄)1 + (3̄)5 + (3̄)5
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Models with dark fermions charged under SU(2)EW × U(1)Y

The same mechanism is possible with a more generic choice of quantum numbers, if the chirality
under GSM is obtained through a mixed use of SU(2)EW and U(1)Y .

Let us consider the following model:

Gauge group : SU(3)DC × SU(2)EW × U(1)Y

Fields : (6; 2)0 + (3̄; 2)0 + (3̄; 2)y1 + (3̄; 2)y2 + (3̄; 2)y3

+ 2× (3̄; 1)−y1 + 2× (3̄; 1)−y2 + 2× (3̄; 1)−y3

We note that there is an even number of doublets (6 + 3 · 4 = 18) and therefore there is no
global anomaly for the SU(2)EW gauge group. A further constraint is given by the requirement
of mixed anomaly cancellation: SU(2)2

EW ·U(1)Y implies the condition y1 + y2 + y3 = 0. If the
constraint is satisfied in a non-trivial way, i.e. the three hypercharges are taken all different from
zero, then the model is chiral by construction. Moreover, it is asymptotically free as it can be
checked using equation (3.5), anomaly free and chiral under SU(3)DC.

The pattern of condensation and the dynamics are the same as the ones discussed of the
previous example.

3.4 Flavour anomalies

We now consider in detail the global accidental symmetries of the dark colour dynamics and show
that for chiral models with gauge group SU(N)DC, in absence of fundamental scalar fields and if
there are no further sources of breaking of the global symmetries, there are always asymptotic
massless states.

Assuming that the dark colour dominates the dynamics at high energies, the flavour symmetry
for a generic choice of quantum numbers (Ri, ri) under SU(N)DC × GSM is

GF =

n⊗
i=1

SU(Ni)

n−1⊗
i=1

Ui(1) (3.8)

where n is the number of different dark color representations and Nj is the number of fermions
that transform under the Ri. The SU(N)’s mix fermions belonging to the same dark color
representation. The U(1)’s rotate each dark color representation with a phase. In principle there
would be n U(1) factors; however there is always a linear combination that is anomalous under
GDC and thus explicitly broken at the quantum level. The remaining (n − 1) have associated
charges chosen in such a way to make them not anomalous under GDC .

The flavour group has in general self anomalies G3
F and gravitational anomalies GF · grav2.

For the ’t Hooft anomaly matching, described in section 3.2, the anomalies in the UV must be
reproduced in the IR; this is possible only if the exact physical spectrum includes massless fermions
or if the symmetry is spontaneously broken (in which case there will be massless Goldstone
bosons). The massless fermions can be either massless composite fermions (baryon-like), or
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elementary unconfined fermions if the gauge group is broken dynamically and the fermions of
interest are singlet under the unbroken confining gauge group.

3.4.1 Flavour anomalies in SU(N)DC chiral gauge theories

We want to prove that for chiral models with an SU(N)DC gauge group and fermions charged
under GSM, there is a flavour anomaly G3

F or GF · grav2.
As said before, the fermions in the same dark colour representation have an SU(Ni) symmetry,

where Ni is the multiplicity of the representation ri. They transform as the fundamental
representation of this global group. Moreover, there is a global U(1) factor for each distinct dark
colour irreducible representation. Under this transformation the dark quarks transforming under
the same irreducible representation share the same charge. One linear combination of the U(1)

factors is explicitly broken by the anomaly under the dark colour gauge group.
A model with a unique anomaly-free complex irreducible representation of SU(N)DC, would

have no U(1) unbroken global symmetry. However for SU(N) gauge groups there are no
representations with these properties with dimension smaller than 3 · 105 [64], therefore we
consider models with two or more representation of small dimension.

We restrict our attention to chiral models with irreducible representations with up to two
indices (i.e. fundamental, symmetric and antisymmetric representations and their complex
conjugates).

The conditions that should be satisfied in order to have a consistent theory with an anomaly-
free flavour group are the following:

1. SU(N)3
DC (gauge anomaly cancellation nFA(F ) + nAA(A) + nSA(S) = 0)

2. U(1) · SU(N)2
DC

3. U(1)3
f

4. U(1)f · grav2

5. SU(Nf )3

6. U(1)f1 · U(1)2
f2

7. U(1)f1 · SU(Nf2)2

In the scenario in which there are only two different representations, the conditions 2) - 4) become:

q1|n1|T (1) + q2|n2|T (2) = 0

q3
1|n1|dim(1) + q3

2|n2|dim(2) = 0

q1|n1|dim(1) + q2|n2|dim(2) = 0

The equations are homogeneous in the charges (they are scale invariant) and so we can choose
an arbitrary normalization without loss of generality: q1 = 1.
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Subtracting the second and the third equation we obtain

q2(q2 − 1)(q2 + 1) = 0

q2 = −|n1|dim(1)

|n2|dim(2)
< 0

So we obtain q2 = −1. Using again the previous equations with q1 = −q2 = 1 we arrive at7

T (1)

T (2)
=
A(1)

A(2)
=

dim(1)

dim(2)

Using the values of the group theory coefficients reported in table 3.2, we check if this equality is
satisfied for the three possible couples: (fundamental, symmetric); (fundamental, antisymmetric);
(symmetric, antisymmetric). We find that there are no solutions to the system.

We consider now the case with three different kinds of representations. If Ni ≥ 3 for a given
i, then we can conclude immediately that there is an SU(Ni)

3 anomaly. To complete the proof,
we show that if Ni < 3 for each i than one of the two abelian U(1) factors is anomalous.

Let us focus on the U(1) factors of the flavour group and consider the conditions they must
satisfy in order to be free of anomalies.

We make use the first four condition and see if there are solutions with Ni < 3.

AFnF +AAnA +ASnS = 0 (3.11a)

qF |nF |T (F ) + qA|nA|T (A) + qS |nS |T (S) = 0 (3.11b)

q3
F |nF |dim(F ) + q3

A|nA|dim(A) + q3
S |nS |dim(S) = 0 (3.11c)

qF |nF |dim(F ) + qA|nA|dim(A) + qS |nS |dim(S) = 0 (3.11d)

As for the case of two irreducible representations, we choose the normalization qF = 1. Moreover,
dividing by |nF | and defining x = nS/nF , y = nA/nF the system 3.11 becomes:

AF + xAS + yAA = 0

T (F ) + qS |x|T (S) + qA|y|T (A) = 0

dim(F ) + qS |x|dim(S) + qA|y|dim(A) = 0

dim(F ) + q3
S |x|dim(S) + q3

A|y|dim(A) = 0

For fixed number of dark colours NDC, this is a system of four equations in four unknowns.
However, the solutions are complicated functions of the parameters and do not take into account
that the variable x and y can assume only rational values. Therefore we choose a different
strategy: we concentrate only on the dangerous solutions with |ni|< 3.

The condition |ni|< 3 corresponds to the values ±2,±1,±1/2 for x and y. For each dangerous
value of x and y, we solve the system as a function of qS , qA and NDC (the system is over-
constrained). If we found a solution with NDC > 2 and integer, then we would have a model in

7We use the convention that A(ri) is definite positive, since we are taking ni already with a minus sign for
conjugate representations.
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which the conditions of flavour and gauge anomaly cancellation 1) to 5) are all satisfied. In this
case we should study the conditions 6) and 7) and see if they are satisfied or not. Numerically
we find that there are no solutions with NDC > 2.

Since none of this solutions is acceptable, we conclude that the anomaly cancellation conditions
cannot be completely satisfied and therefore that there are always ’t Hooft anomalies in the
flavour group of the models we are considering.

By ’t Hooft anomaly matching there should be massless states in the physical spectrum,
unless the flavour group is broken explicitly.

This argument is not valid if one has a single anomaly free chiral representation. For instance
if one consider a single copy of the spinorial representation 16 of the gauge group SO(10), one
has a chiral model with no unbroken global symmetry group, since the U(1) factor is anomalous
under the gauge group. In this case one cannot use ’t Hooft anomaly matching to conclude that
there must be massless states in the infrared.

3.4.2 Mechanisms to give mass to the light states

We have shown that, if there exist at least two types of representations of SU(N)DC and in
absence of elementary scalar fields, chiral models have non-vanishing flavour anomalies, that in
turn implies the existence of massless states. We want now to understand which are the possible
mechanisms that can give a non-vanishing mass to these light states.

In order to bypass the result of the flavour anomaly matching, an explicit breaking of the
flavour symmetry group is required. We shall present an overview of some mechanism that can
realise this and provide an estimate of the induced mass.

Yukawa coupling

A first possibility is to introduce a scalar field charged under the dark colour and with the right
quantum numbers so that it is possible to write Yukawa coupling terms in the lagrangian. We
stress that the scalar field has to be charged under GDC since in a chiral model it is not possible
to write a fermion bilinear that is a singlet of GDC .

In general these terms induce a breaking of the flavour group; if the scalar field acquires a
vacuum expectation value different from zero this interaction induces a mass for the fermions of
order yv.

This mechanism is the one that is realised in the Standard Model, where the Higgs field,
charged under GSM, gives mass to the fermions through the Yukawa interaction.

Gauging

When we consider the flavour group we are considering the global symmetry group of the
lagrangian that describes the dark colour interaction, neglecting the Standard Model gauge
interactions (assumed to give a small correction). This is analogous to what we do when we
consider the QCD lagrangian and its global chiral symmetry group neglecting electroweak gauge
interactions.
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Switching on the Standard Model interactions induces, in general, an explicit breaking of the
global flavour group GF . The asymptotic states that transform under non-trivial representations
of the gauge group receive loop corrections. For the fermion states we can estimate the contribution
to their mass as

m ∼ g2

16π2
ΛDC

If the flavour group is spontaneously broken, the gauge interactions can generate a potential for
the Goldstone bosons charged under GSM. The contribution to their mass can be estimated as

m2 ∼ g2

16π2
Λ2

DC

This is what happens in QCD for the charged pions π±, whose mass gets a contribution from
electromagnetic interactions.

Higher dimensional operators

The global flavour symmetry group is an accidental symmetry group of the renormalizable
lagrangian. If we consider higher dimensional non-renormalizable operators we can induce a
breaking of the global symmetry.

Axions and axion-like particles

Let us consider the Goldstone boson associated to the spontaneous breaking of the global
symmetry group and suppose that the current associated to the corresponding generator has a
mixed anomaly under the Standard Model gauge group.

This is for example the case for the pion: the current associate to the neutral pion π0 has a
mixed anomaly with electromagnetic interactions that induces the decay π0 → γγ.

The anomaly induces a term in the effective action describing the pion

L ⊃ αemNc

12πFπ
π(x)Fµν ˜Fµν

We want to understand if this term can induce a mass for the Goldstone boson.
Without including the term induced by the anomaly, the effective lagrangian describing the

Goldstone boson has a shift symmetry which protects them from acquiring a mass. We want to
understand if this shift symmetry is still a valid symmetry when we include the term induced
by the anomaly. The point is that the shift induces a term which is analogous to the θ term.
This term can be reabsorbed for U(1)Y and for SU(2)EW. Therefore, the shift symmetry is a
valid symmetry that forbids the generation of a mass term (even by non-perturbative effects) for
Goldstone bosons anomalous under SU(2)EW × U(1)Y .

The argument does not apply if there is an anomaly under the colour gauge group SU(3)c.
Indeed, in this case, the Goldstone boson plays the role of an axion and its mass can be computed
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through chiral lagrangian techniques [65,66] to be

m2
a =

mumd

(mu +md)
2

m2
πf

2
π

f2
a

where ma is the axion mass and fa is its decay constant where we expect the scaling law

fa ∼
ΛDC

4π



Chapter 4

Models with an infrared fixed point

We are interested in studying the dynamics and phenomenology of a model in which the dark
sector has a non-trivial infrared fixed point and an explicit mass term of the fermions stops the
flow towards the fixed point and gives a confining theory. The model is characterised by two
scales, the dark quark mass MQ and the confinement scale ΛDC, and exhibits a natural hierarchy
of scales due to the non-trivial infrared dynamics. Furthermore, our choice for the fermionic
representations has non-trivial phenomenological consequences that differentiate our model from
others studied in the literature. Our scenario is a valid alternative to QCD-like models based on
vector-like confinement and gives a different phenomenology, as we shall discuss in chapter 5.

In section 4.1 we briefly review the Renormalization Group flow and the definition of fixed
point. We then discuss how a relevant term in the lagrangian, such as a mass term, can change
the running of the coupling constant in a model with an infrared fixed point. We limit ourselves
to the study of models in which the coupling at the fixed point is perturbative in order to have
full control of the theory and perform reliable calculations, leaving the non-perturbative case for
further studies.

In section 4.2 we show that an SU(N)DC gauge theory with 5 massless Weyl fermions in the
adjoint representations has a perturbative infrared fixed point. We choose this model as a simple
benchmark scenario and analyse its dynamics. We discuss what are the asymptotic states of the
confining dynamics in the infrared, specialising to the case NDC = 3 in order to have quantitative
clues from the existing lattice computations.

In the last section (4.3) we discuss what are the possible assignments of Standard Model
quantum numbers for the dark sector fermions, compatible with the request that the SM gauge
couplings do not have Landau poles at low energies. We then write the lagrangian for the two
relevant models, discussing the masses of the different states, the accidental symmetries, and
how higher dimensional operators break these symmetries.

4.1 Renormalization Group flow and infrared fixed points

In Quantum Field Theory the cancellation of ultraviolet divergences is achieved through the
renormalization procedure [67]. The bare fields and parameters in the lagrangian are redefined
through infinite renormalization constants, yielding to finite physical predictions. If the theory is

45
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renormalizable, a finite number of terms in the lagrangian is sufficient to absorb all the infinities,
giving finite results for all the possible correlation functions needed in the calculation of physical
observables.

The effects of the high momentum virtual particles running in the loops are encoded in
the renormalization of the fields and parameters. As a result of the renormalization procedure,
the parameters of the field theory turn out to be scale-dependent, with their evolution being
described by differential equations known as renormalization group equations.

Formally, this can be seen as a consequence of the fact that in the renormalization procedure
an arbitrary, unphysical, renormalization scale (usually denoted µ) must be introduced. Requiring
that the physical observables are renormalization scale independent (setting the derivative of the
observables with respect to the renormalization scale to zero) yields the renormalization group
equations describing the running of the parameters as a function of the scale.

The evolution of the coupling constant as a function of the momentum, i.e. its renormalization
group flow, is described by the β function

β(g) = µ
d

dµ
g(µ) (4.1)

The sign of the β function controls the qualitative behaviour of the running coupling:

◦ a positive sign of the β function describes a running coupling that increases at high energies
(short distances) and decreases at small energies (long distances);

◦ a zero of the β function corresponds to a point at which the coupling constant does not flow
and has a constant value, independent of the energy scale. This is called a fixed point of
the renormalization group flow. The non-interacting free field theory (g = 0) has a trivial
fixed point, β being identically zero;

◦ a negative sign of the β function describes a running coupling that increases at small
energies (long distances) and decreases at high energies (short distances).

In theories in which β(g) is non-negative, the infrared dynamics takes place in the neigh-
bourhood of a fixed point, either trivial on non-trivial, while the short distance behaviour is
non-perturbative. A prominent example is QED, a U(1) gauge theory with charged Dirac
fermions: the infrared dynamics can be understood through perturbative computation while in
the far ultraviolet there is a Landau pole, symptomatic of a non-perturbative dynamics taking
place.

Conversely, theories in which the β function is negative are non-perturbative in the infrared
regime and flow in the ultraviolet towards a fixed point. If the coupling constant flows to
the trivial fixed point, then the theory is called asymptotically free. Theories in this class are
completely under perturbative control in the short distance regime; a prominent example is given
by QCD.

In the region in which the coupling constant is small enough, the β function can be computed
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in perturbation theory. Usually it is expressed as

β(g) = µ
d

dµ
g(µ) = −b0

g(µ)3

16π2
− b1

g(µ)5

(16π2)2
+O

(
g(µ)7

)
(4.2)

Let us now assume to be in the weak coupling regime, in which the three loop contribution can
be neglected, and analyse the renormalization group flow of the model in different cases.

4.1.1 Asymptotically free models

If b0 > 0 and b1 > 0, the model is asymptotically free and flows towards the trivial fixed point in
the ultraviolet. The qualitative behaviour of the running coupling constant in this case can be
well approximated by neglecting the two loop contribution. The β function then becomes

β(g) = µ
d

dµ
g(µ) = −b0

g(µ)3

16π2
(4.3)

from which, integrating, we obtain

1

g2(µ)
=

b0
8π2

log
(µ

Λ

)
=⇒ g2(µ)

16π2
=

1

2b0 log
(µ

Λ

) (4.4)

The theory can be defined either by assigning the value of the coupling constant g at a given
scale µ0 or by assigning the value of the energy scale Λ. The connection between these two point
of views is called dimensional transmutation since it allows one to trade a coupling constant with
a dimensionful parameter.

Even though the coupling seems to be divergent at the scale Λ, it should be noted that the
solution 4.4 is valid only in the perturbative regime.

As an example, we plot in figure 4.1 the beta function and the evolution of the coupling
constant for an SU(3) pure Yang Mills gauge theory, for which b0 = 11.
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(a) β function dependence on the coupling constant at one loop. The
arrow denotes the orientation of the Renormalization Group flow with
increasing energy.
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(b) Running of the coupling constant at one loop. As it can be seen from
the graph, the scale Λ roughly corresponds (up to order one factors) to
the scale at which the dynamics becomes non-perturbative.

Figure 4.1: β function and running of the coupling constant in an asymptotically free model with no
infrared fixed point (in the plot we use b0 = 11, corresponding to the pure Yang Mills SU(3) gauge theory).
The coupling constant decreases at high energy, approaching the trivial fixed point in the ultraviolet.
The shaded area corresponds to the region in which the theory is non-perturbative and the perturbative
calculation is no more valid.
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4.1.2 Models with an infrared fixed point

Let us consider the case in which b0 and b1 have opposite sign. In the perturbative regime
(g � 4π), assuming the three loops contribution to be negligible, the β function takes the form

β(g) = µ
d

dµ
g(µ) = −b0

g(µ)3

16π2
− b1

g(µ)5

(16π2)2
(4.5)

A representative plot of the β function is shown in figure 4.2a.
The perturbative calculation would imply the existence of a zero of the β function, i.e. a

fixed point β(g∗) = 0. In particular, since b0 > 0 and b1 < 0, the flow towards the fixed point
is obtained for decreasing energies, both from above (g(µ) > g∗) and from below (g(µ) < g∗).
Therefore, in this case the fixed point is said to be an infrared fixed point.

The value of the coupling at the fixed point would be given by

g∗ = 4π

√
−b0
b1

(4.6)

However, we stress that this calculation can be trusted only if the coupling at the fixed point is
perturbative g∗ � 4π, that in turn implies |b0|� |b1|. Usually, in order for this to be the case, it
is necessary to have a cancellation in the one-loop coefficient, so that the two-loop contribution
is not a small correction in the neighbourhood of the fixed point. In the next section we shall
show explicitly a model in which this is the case. For the moment let us just assume we are in
this situation.

We point out that differently from the case discussed in the previous section, the condition
b0 > 0 does not assure that the model is asymptotically free. Indeed, this is true only in the
region in which the β function is negative: the left branch of figure 4.1 corresponding to the
condition g(µ) < g∗. On the contrary, if g(µ) > g∗ then the coupling grows with energy and the
model has a Landau pole in the ultraviolet. In order to completely define a model it is necessary
to specify the value of the coupling constant at a given scale and this assignment specifies in
which branch we are.

In the neighbourhood of the fixed point the β function can be approximated as

µ
d

dµ
g(µ) = a(g − g∗) (4.7)

where

β(g∗) = 0, a =
d

dg
β(g∗) = −2b20

b1

A model with an infrared fixed point has a > 0, while a model with an ultraviolet fixed point
would have a < 0.

Equation 4.7 can be readily integrated, obtaining:

g(µ) = g∗ +
(
g(Λ)− g∗

)(µ
Λ

)a
(4.8)
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(a) β dependence on the coupling constant at two loops. The coupling at
the fixed point is denoted by g∗ and it is perturbative. The arrows denote
the orientation of the Renormalization Group flow with increasing energy.
As it can be seen, there are two branches: the left one corresponds to
an asymptotically free model with an infrared fixed point; the right one
corresponds to a model with a Landau pole in the UV and a fixed point
in the infrared.
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(b) Number of e-folds necessary to be near the fixed point as a function of
the initial value. Specifically, we plot − log(µ/Λ) where |g(µ)− g∗|= 0.05
and g(Λ) is the initial condition, solving numerically the two loop equation.
As can be seen from the graph, the running for this model is very slow;
the reason is that in this model the β function in the asymptotically free
branch is bounded by |β| < 0.0015, a very small value.

Figure 4.2: β function and running of the coupling constant in a model with an infrared fixed point and
massless fermions. In the graph we use b0 = 1 and b1 = −138, corresponding to the model described in
section 4.2 - an SU(3) gauge theory with 5 Weyl fermions in the adjoint.
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Not asymptotically free branch

In the branch at the right of the fixed point in figure 4.2 the β function is positive and the model
is no longer asymptotically free but has a Landau pole in the ultraviolet.

This is the case because in this region the two loops contribution to the β function, which is
positive for a model with an infrared fixed point, starts to dominate the evolution.

In order to have a viable model we require the Landau pole to be above the Planck mass
scale MPl = 1.2× 1019 GeV. If we define our model by assigning the value of the coupling at a
given scale, this request results in an upper bound on the value that the coupling can have. In
order to have a quantitative bound, we do an order of magnitude estimate of the Landau pole
scale by approximating the β function with the two loop contribution alone, which is the one
that dominates in the region in which β > 0.

Then we have

µ
d

dµ
g(µ) = −b1

g(µ)5

(16π2)2
(4.9)

and integrating we obtain:
1

g4(µ)
=

b1
210π4

log

(
µ

ΛLP

)
(4.10)

From this, requiring that ΛLP > MPl, we obtain an upper bound on the coupling:

g(µ) ≤

 210π4

b1 log

(
µ

MPl

)


1
4

(4.11)

By including the one loop contribution, which is negative, the estimate for the upper bound
would increase, since the running would be slower. In our analysis, however, it will be sufficient
to use the lower estimate, which gives a more restrictive bound, as we shall not work on the
boundary of this region.

4.1.3 Conformal window

To be concrete, let us consider an SU(N)DC gauge theory with Nf Weyl fermions transforming
as a representation r of the gauge group1. The β function coefficients are given by [68,69]:

b0 =
11

3
C

(adj)
2 − 2

3
T (r)Nf (4.12)

b1 =
34

3

(
C

(adj)
2

)2
− 2T (r)Nf

[
5

3
C

(adj)
2 + C

(r)
2

]
(4.13)

where C(r)
2 is the quadratic Casimir invariant of the representation (r) defined by

C
(r)
2 ≡

∑
a

T
(r)

a T (r)
a

1Nf is the multiplicity of the representation r, often referred to as the number of flavours
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and T (r) is the Dynkin index of the representation defined as

T (r)δab ≡ Tr
[
T (r)
a T

(r)
b

]
Using the explicit value of the Casimir invariant for the adjoint representation C(adj)

2 = NDC, we
obtain:

b0 =
11

3
NDC −

2

3
T (r)Nf (4.14)

b1 =
34

3
(NDC)2 − 2

3
T (r)Nf

[
5NDC + 3C

(r)
2

]
(4.15)

Varying the number of dark colours and the number of flavours, the β function coefficient can
change sign. Let us consider the behaviour of the two coefficients as a function of the number of
flavours Nf for a fixed number of colours NDC.

The one-loop coefficient b0 is positive for Nf = 0 and, since T (r) > 0, it decreases with Nf .
At a certain point, b0 becomes negative and asymptotic freedom is lost: we define (Nf )af to be
the value (not necessarily integer) at which the zero is attained. One finds

(Nf )af =
11

2

NDC

T (r)

Similarly, the two loop coefficient b1 is positive for Nf = 0 and decreases with Nf . We define
(Nf )∗ as the value at which the zero occurs. We have

(Nf )∗ =
17(NDC)2

T (r)
(

5NDC + 3C
(r)
2

)
At fixed number of colours NDC, one finds (Nf )af > (Nf )∗ as can be readily verified; therefore,
there is always a region in which b0 > 0 and b1 < 0. As we discussed in the previous paragraph,
the perturbative analysis implies the existence of a fixed point in the region in which the coupling
g∗ is perturbative. We have

g2
∗

16π2
=

11(NDC)− 2TNf

2TNf

(
5NDC + 3C

(r)
2

)
− 34N2

DC

To be conservative, we consider as perturbative the region in which g2
∗/16π2 . 1/100. The

existence of a fixed point can extend beyond the perturbative regime; the region in which the
theory has an infrared fixed point is referred to as the conformal window. Lattice simulations are
the main tool available to analyse the behaviour of the theory in the non-perturbative regime2,
and many works have been devoted to finding the lower boundary of the conformal window (for
a review see [36], while for a summary of lattice results see [51]).

The phase structure of non-Abelian gauge theories with vectorlike fermions has been studied
2With the exception of supersymmetric theories, for which exact non-perturbative results have been derived by

analytical methods.
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Figure 4.3: Conformal window as a function of the number of dark colours and the number of Weyl
fermions for two different representations. The conformal window encompasses the region in which the
coupling is perturbative; however, the boundary between the conformal window and the confinement
region is non-perturbative and the graph is only representative.

first by Banks and Zaks in [70] and the fixed point is often called Banks-Zaks fixed point.
Representative plots are shown in figure 4.3 for Weyl fermions in the fundamental and the

adjoint representations.

4.1.4 Mass term and breaking of the approximate conformal symmetry

We are interested now in describing the dynamics of the model in the vicinity of the fixed point
and to see what happens if there is a deformation such as a mass term.



54 CHAPTER 4. MODELS WITH AN INFRARED FIXED POINT

A model is said to have a conformal symmetry if the stress-energy tensor is traceless, i.e.
Θµ
µ = 0. In particular, it is possible to show that if this condition is satisfied, then the model

is scale invariant [67]. A gauge theory with massless fermions and only marginal terms in the
lagrangian is scale invariant at the classical level, since there is no mass scale. This invariance is
however broken at the quantum level by the so called trace anomaly3 [67]:

Θµ
µ = β(g)

∂

∂g
L (4.16)

In the region in which the β function is negligible (i.e. near a fixed point) we have a model with
an approximate conformal invariance.

Let us introduce now a deformation to this model by adding a relevant term in the lagrangian:

L ⊃ cΛ4−∆O∆

where ∆ is the scaling dimension of O∆ and we require ∆ < 4 in order to have a relevant
term. For example this could be the mass term of a fermion: O∆ = ψψ. If the model is weakly
interacting, for this operator we have4: ∆ ∼ 3 and cΛ4−∆ = MQ. However, if the dynamics is
strong and we are near the fixed point, the anomalous dimension can be large.

Let us assume that at a given energy ΛUV the β function and the coefficient in front of the
relevant operator in the lagrangian are both small β � 1, cUV � 1, so that the model exhibits
an approximate conformal symmetry.

Then, flowing at low energies towards the infrared fixed point, the coefficient of the relevant
term grows like:

c(µ) = cUV

(
ΛUV

µ

)4−∆

At a scale ΛIR the coefficient becomes of order 1 and the approximate conformal invariance is
explicitly broken by this term. This happens at:

ΛIR = (cUV)
1

4−∆ ΛUV (4.17)

If the dynamics near the fixed point is perturbative, then the dimension of the operator is
approximately the classical one ∆ ' 3 and equation 4.17 becomes

ΛIR = cUVΛUV = MQ

Below the scale MQ the heavy fermions decouple and we are left with an effective gauge theory
with an effective coupling [71]. At tree level, neglecting threshold effects, the matching between
the effective coupling and the true coupling must be done at the energy MQ.

If, for instance, the fermions share all the same mass, then we are left with an effective
theory which is a pure gauge theory that confines in the infrared. The running is described by

3That is to say: at the quantum level a scale arises through dimensional transmutation.
4This means that the anomalous dimension is a small correction with respect to the classical dimension of the

operator.
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equation 4.4, where b0 = 11
3 NDC for a pure gauge theory. Inverting this equation we obtain

ΛDC = MQ exp

(
− 8π2

b0g(MQ)2

)
(4.18)

If the fixed point is perturbative, or if the coupling at the scale MQ is perturbative, a great
separation of scales between MQ and ΛDC can be obtained in a natural way.

From the low energy point of view we have then a confining gauge theory with fermions
heavier than the confinement scale and a natural hierarchy between the mass and the confinement
scale.

4.2 Model with adjoint fermions

We consider here an SU(N)DC gauge theory with Nf Weyl fermions transforming as the adjoint
representation of the gauge group.

For the adjoint representation, the group theory invariants C(adj)
2 and T (adj) have both the

value NDC. Therefore, from equation 4.12 we obtain

b0 =
11

3
NDC −

2

3
NDCNf

b1 =
34

3
N2

DC − 2NDCNf

[
5

3
NDC +NDC

]
=

34

3
N2

DC −
16

3
N2

DCNf

(4.19)

We stress that the one loop and two loops coefficients of the β function are renormalization-scheme
independent.

In order to have an infrared fixed point it is necessary to have

b0 > 0⇒ Nf <
11

2

b1 < 0⇒ Nf >
17

8

(4.20)

However the perturbative calculation is valid only if the value of the coupling at the fixed point
is perturbative (g2

∗/16π2)� 1.
The value of the coupling at the fixed point is

g∗ = 4π

√
−b0
b1

= 4π

√
11− 2Nf

15NfNDC − 34NDC
(4.21)

which is a decreasing function of the number of flavours Nf .
The conditions 4.19 are satisfied for Nf = 3, 4, 5, therefore the perturbative calculation would

suggest an infrared fixed point for these models.
The case Nf = 4, which can be equivalently seen as a vector-like model with two flavours

of adjoint Dirac fermions, has been studied through lattice simulations; the results indicate a
non-perturbative dynamics: for NDC = 2 the model is in the conformal window [72], while for
NDC = 3 there is confinement [73, 74]. This suggests that the models with Nf = 3, 4 have a
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non-perturbative dynamics. The model with NDC = 2 and Nf = 4 has been studied in the
context of technicolor theories for the electroweak symmetry breaking, in particular in the works
Minimal Walking Technicolor [75].

For Nf = 5, there is a cancellation between the two terms of the coefficient b0, leading to the
smallest value for the coupling g∗. We have:

b0 =
1

3
NDC

b1 = −46

3
N2

DC

g∗ = 4π

√
1

46NDC
≈ 1.85√

NDC

For NDC = 3, the value of the coupling at the fixed point is g∗ ≈ 1.07. The case Nf = 5 is more
difficult to study on the lattice with the usual techniques since we are dealing with a gauge
theory which is not vector-like. At the moment there are no available lattice simulations; since
(g2
∗/16π2)� 1, we assume the perturbative calculation to be valid and that there is an infrared

fixed point.
The existence of a perturbative fixed point for this choice of representations is known in

the literature. However phenomenological studies based on models with conformal dynamics
have been conducted mainly in the context of technicolor theories describing the electroweak
symmetry breaking (for a review see [36]). At our knowledge, no concrete phenomenological
model based on the choice of representations with 5 adjoint Weyl fermions has been studied yet,
in particular in the context of dark sectors.

We shall consider this model as a benchmark scenario for a dark sector with an infrared fixed
point and study its phenomenology, that, as we shall see, is vastly different from the one realised
in models realising vector-like confinement.

An other possible choice would be to study the phenomenology of a dark sector with an
SU(N)DC gauge theory near the Banks-Zaks fixed point [70]. However, to be near the Banks-
Zaks fixed point in the perturbative region, 16 Dirac fermions (i.e. 32 Weyl fermions) in the
fundamental representation of the gauge group are needed. This is a huge multiplicity compared
with the 5 Weyl fermions that are sufficient in the adjoint case. Furthermore, we find interesting
to study the phenomenology of a model with fermions in the adjoint which is much different and
has not received much attention in the literature on non-abelian dark sectors until now.

4.2.1 Dynamics of the model

From now on, we shall focus on the model with gauge group SU(N)DC and 5 Weyl fermions
transforming as the adjoint. To be concrete, we specialise to the case NDC = 3. We shall refer to
the gauge bosons of SU(3)DC as dark gluons and to the fermions charged under this group as
dark quarks.

Using the results of the previous section, for this model we obtain b0 = 1, b1 = −138. The β
function is shown in figure 4.2.

From equation 4.6, the coupling at the fixed point is g∗ = 1.07.
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The running in the asymptotically free branch is very slow. This is due to the fact that the
β function in this branch is bounded by |β| < 0.0015, a very small value. It follows that, for
example, to have an increase ∆g = 0.1 in the coupling constant the running scale should decrease
by 29 orders of magnitude.

In fact, such large excursions are never obtained. In practice, the coupling has an approxi-
mately constant value in the mass range of interest. We consider the Planck mass MPl as the
ultraviolet cut-off of the model. In the infrared, the coupling flows towards the fixed point until
the energy becomes smaller than the mass of the dark quarks. Let us assume for simplicity that
the 5 adjoint fermions all share the same mass. Then, below this threshold the fermions decouple
and the dynamics can be described by an effective pure gauge theory.

To define the model we specify the value of the coupling at the mass scale of the fermions.
In the asymptotically free branch we have 0 < g(MQ) ≤ g∗ = 1.07. The confinement scale

is given by equation 4.18. In this branch due the exponential suppression we obtain a large
hierarchy between the mass and the confinement scale:

ΛDC ≤MQ exp

(
− 8π2

b0|YM g2
∗

)
= 2× 10−3MQ (4.22)

where b0|YM is the β function one-loop coefficient of the pure gauge infrared theory. For an
initial condition g(MQ) = 0.5 we would have a confinement scale ΛDC ∼ 10−13MQ.

In the second branch g(MQ) ≥ g∗. The upper bound 4.11 for a typical fermions mass scale of
MQ ∼ O(1− 10) TeV becomes g(MQ) . 2.1. In this case there can be a smaller separation of
scales among ΛDC and MQ. The upper bound on the coupling constant translates into an upper
bound on the confinement scale:

ΛDC ≤MQ exp

−
(
b1 log

(
MQ
MPl

)) 1
2

4 b0|YM

 = MQ exp

(
−2.9

√
log

(
MPl

MQ

))
(4.23)

For MQ ∼ O(1− 10) TeV this gives ΛDC . 0.2 MQ.

Bound states

We have a confining gauge theory with heavy dark quarks transforming as the adjoint represen-
tation.

The dark gluons form bound states known as glueballs with a mass of order ΛDC. The ligthest
glueball, Φ, has quantum numbers JPC = 0++ and a mass MΦ ≈ 7 ΛDC [76–78].

In the heavy quark regime MQ � ΛDC, we expect the mass of the bound states containing
at least one dark quark to be roughly the sum of the masses of the constituent quarks, with a
negligible contribution from the binding energy.

In the case of adjoint fermions the lightest state involving a quark is a bound state of one
quark and one gluon. Indeed since they both transform as the adjoint we have the following
decomposition

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27 (4.24)



58 CHAPTER 4. MODELS WITH AN INFRARED FIXED POINT

and we see that it is possible to have a dark colour singlet. The bound state, which we shall call
χ, has a mass of order Mχ ≈MQ, spin 1

2 and the same Standard Model quantum numbers as its
constituent dark quark. Its existence is confirmed by lattice calculations [79, 80]. In the context
of supersymmetric theories in which gluons come with gluinos (adjoint fermions), this bound
state is known as glueballino. We shall call it gluequark to remark that we are dealing with a
non-supersymmetric model.

As we shall discuss in the next section, the models we shall be considering feature an accidental
Z2 symmetry5 acting on the dark quark fields, referred to as dark parity. Summarising, the
asymptotic states can then be classified according to this symmetry:

◦ dark parity even states are composite states with an even number of constituent dark
quarks. The lightest state which in this group is the glueball Φ with quantum numbers
JPC = 0++; lattice simulations suggest a mass MΦ ≈ 7 ΛDC.

◦ dark parity odd states have an odd number of dark quarks. The lightest state in this group
is the gluequarkχ which in the heavy quark regime has a mass Mχ ≈MQ

Dark quarks can also form bound states with two or more constituent quarks, such as di-quarks
(the analogue of mesonic states) and tri-quarks (the analogue of baryonic states for an SU(3)

gauge theory). Nevertheless, these states are heavier and are expected to decay to glueballs
and gluequarks , the lightest states with odd and even dark parity. Indeed, the multi-quark
states are not protected by any further symmetry and the decay modes are kinematically allowed
(in the regime MQ � ΛDC). This is a crucial difference with respect to the case of fermions
transforming as the fundamental representation, where dark mesons and dark baryons are the
relevant asymptotic states with constituent dark quarks.

4.3 Standard Model quantum numbers and spectrum

We are interested in studying the possibility that the dark sector interacts with the Standard
Model fields not only through gravity but also through electroweak interactions. For our model
we have then to understand what are the possible assignments of Standard Model quantum
numbers for the new fields.

The introduction of new fermions charged under the Standard Model gauge group modifies
the running of the couplings6. The main restriction arises from the requirement that the Standard
Model gauge couplings do not have Landau poles below the Planck mass.

The new particles charged under the electroweak group modify the running at scales above
their mass scale MQ. Let bSM be the one loop β function coefficient predicted by the Standard

5This is an accidental global symmetry of the renormalizable lagrangian, but could be broken explicitly by
higher dimensional operators.

6It has been proposed in reference [81] to use the energy dependence of the coupling constants α1, α2 to set
limits on new particles with electroweak interactions in a model independent way. However, the current sensitivity
is limited to new states of mass MQ ≤ 1TeV (see figure 17 in [81]). As we shall see, in our models the dark
matter candidates have a mass greater than 1TeV, avoiding the collider bounds on the running of the electroweak
couplings; future experiments such as a 100TeV proton-proton collider can be sensitive to the mass range of
interest.
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Model and let ∆b be the contribution from new particles with mass MQ. We point out that
∆b < 0: indeed, matter fields can give only negative contributions to the coefficient of the β
function, as can be seen from equation 4.12.

Neglecting threshold corrections atMQ and demanding that the couplings do not have Landau
poles below MPl, equation 4.4 gives the constraint:

bBSM = bSM + ∆b ≥ −
8π2 + bSM log MQ

µ1

g2(µ1) log MPl
MQ

(4.25)

where µ1 < MQ In the Standard Model, at scales µ > mt ' 173GeV, the running of the
electroweak gauge couplings is determined by the coefficients7

bSMY = −41

6
, bSM2 =

19

6
(4.26)

Using the values of αem(MZ) ≈ 1/128 and sin2(θW (Mz)) ≈ 0.23 from the PDG Review of
Particle Physics [82], we have:

g2
Y (MZ) = 4π

αem(MZ)

cos2(θW (Mz))
≈ 0.13

g2
2(MZ) = 4π

αem(MZ)

sin2(θW (Mz))
≈ 0.43

Assuming MQ ≈ 1TeV, we obtain:

bBSMY ≥ −14 =⇒ ∆bY ≥ −7 (4.27)

bBSM2 ≥ −5.5 =⇒ ∆b2 ≥ −8.5 (4.28)

Contributions from electroweak multiplets and hypercharges

From equation 4.12, for a non-abelian gauge group SU(N) each Weyl fermion transforming in the
representation r contributes to the β function

∆b2 = −2

3
T (r)

Using the following group theory identity, valid for SU(N) representations:

C
(r)
2 × dim(r) = (N2 − 1)T (r) (4.29)

and specialising to the case N = 2 for which we know that

dim(r) = 2j + 1 C
(r)
2 = j(j + 1) =

1

4
(dim(r)− 1)(dim(r) + 1)

7Here bSMY is the one loop beta function coefficient relative to the hypercharge coupling constant. bSM2 is the
one loop coefficient relative to the running of the SU(2) electroweak coupling constant.
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we derive the relation:
T (r) =

1

12
dim(r)(dim(r)− 1)(dim(r) + 1) (4.30)

For SU(2) doublets and the triplets this gives:

T (2) =
1

2
T (3) = 2

For an abelian gauge group U(1), a Weyl fermion with hypercharge y contributes as

∆bY = −2

3
y2

4.3.1 Model with a triplet and two singlets under SU(2)EW

Let us consider a model in which three of the 5 adjoint Weyl fermions transform as a triplet of
the electroweak SU(2) gauge group, with zero hypercharge, and the other two are singlets of the
Standard Model. Schematically:

Gauge group : SU(3)DC × SU(3)c × SU(2)EW ×U(1)Y

Fields : (adj; 1, 3)0 + (adj; 1, 1)0 + (adj; 1, 1)0

Using the notation of reference [1] we denote the triplet with zero hypercharge as V and the
singlets as N1, N2, calling this model VNN.

For this model ∆bY = 0 but ∆b2 = −32/3, therefore it has a Landau pole near the Grand
Unification scale MGUT ∼ 1015 GeV. Even though the Landau pole is below the Planck mass, we
choose to study this model as a relevant example. A UV completion will be needed at the GUT
scale, which is anyhow an incredibly high and physically motivated scale.

Using a two components spinor notation, the most general renormalizable lagrangian for this
model is given by

L = LSM −
1

4
GaµνGaµν −

1

2ξ

(
∂µA

a
µ

)2
+ (∂µc̄

a)
(
δac∂µ + gDCf

abcAbµ

)
cc

+ V †a,iiσ̄
µDab,ij

µ Vb,j −
1

2
Mab,ij
V

(
Va,iVb,j + V †a,iV

†
b,j

)
+N †a,piσ̄

µDab,pq
µ Nb,q −

1

2
Mab,pq
N

(
Na,pNb,q +N †a,pN

†
b,q

) (4.31)

where the a = 1, ..., N2
DC − 1 (dark colour), i = 1, 2, 3 (electroweak triplet), p = 1, 2 (singlets) and

the Einstein summation convention is understood. The fields Va,i and Na,p are left-handed Weyl
spinor fields8 and carry a Lorentz index α = 1, 2 which is understood and properly contracted9.

The field strength is defined as usually

Gaµν = ∂µA
a
ν − ∂νAaµ + gDCf

abcAbµA
c
ν

8They are a
(

1
2
, 0
)
representation of the Lorentz group. Under a generic rotation of angle θi and boost of

rapidity βi, they transform as V,N → e
1
2

(iθiσi+βiσi)V,N .
9We use the convention ψ1ψ2 ≡ ψα1 ψ2α = εαβψ1βψ2α
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The covariant derivative acting on the triplet is

Dab,ij
µ = δabδij∂µ − δijigDCA

c
µ

(
T cadj

)ab − δabig2W
k
µ

(
tkV

)ij
The covariant derivative acting on the singlet is

Dab,pq
µ = δabδpq∂µ − δpqigDCA

c
µ

(
T cadj

)ab
All the fermions transform as the adjoint of SU(3)DC; moreover, the SU(2) triplet corresponds
to the adjoint representation. Therefore we need the generators of the adjoint representations of
SU(3) and SU(2), which can be expressed as

(
T cadj

)ab
= −if cab = −ifabc(

tkV

)ij
= −iεkij = −iεijk

where fabc are the structure constants10 of SU(3) and εijk is the Levi-Civita tensor.
The mass term for the triplet must be invariant under SU(3)DC and SU(2). For a real

representation the most general invariant mass term can be written in a base in which the
generators are antisymmetric and real11 in the following way:

Mab,ij
V = MV δ

abδij

Indeed one has that

MV −→ eiαT
T
MV e

iαT = eiαT
T
eiαTMV = e−iαT eiαTMV = MV

where T T = −T follows from the antisymmetry of the generators. We stress that this form of the
mass term is consistent with the Fermi-Dirac nature of the fields. Indeed the Lorentz structure is
antisymmetric (there is an ε in the contraction of the Lorentz indices), while the mass matrix is
symmetric in its indices, giving a antisymmetric mass term.

The most general mass term for the singlets can be written as:

Mab,pq
N = δab

(
M11 M12

M12 M22

)

where the diagonal elements correspond to Majorana mass terms and the off-diagonal elements
correspond to a Dirac mass term. It is always possible to diagonalise this matrix through an
orthogonal transformation that rotates the fields Np. Therefore we can always redefine the fields
in such a way that the mass matrix is

Mab,pq
N = δab

(
MN1 0

0 MN2

)
10fabc is completely antisymmetric and real [67].
11As the one that we are using.
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Therefore, we are dealing with a lagrangian describing a triplet of Majorana spinors V with mass
MV transforming as an adjoint representation of SU(2) and two Majorana spinors N1,2 of masses
MN1 and MN2 , singlets under GSM. Each one has a dark colour index and transforms as the
adjoint of SU(3)DC.

It is possible to rewrite the lagrangian using a four component notation for the Majorana
spinors. Defining

ΨV =

(
V

V c

)
ΨN1 =

(
N1

N c
1

)
ΨN2 =

(
N2

N c
2

)
where V c = iσ2V † = εV †, the lagrangian becomes:

L = LSM −
1

4
GaµνGaµν −

1

2ξ

(
∂µA

a
µ

)2
+ (∂µc̄

a)
(
δac∂µ + gDCf

abcAbµ

)
cc

+
1

2
Ψ̄a
N1

(
i /D

ab −MN1δ
ab
)

Ψb
N1

+
1

2
Ψ̄a
N2

(
i /D

ab −MN2δ
ab
)

Ψb
N2

+
1

2
Ψ̄a,i
V

(
i /D

ij,ab −MV δ
abδij

)
Ψb,j
V

(4.32)

The triplet has one electromagnetically neutral component and two components with charge ±1.
Loop corrections split the multiplet, increasing the mass of the charged components and leaving
the neutral one as the lightest. The mass splitting is not affected by dark colour interactions and
corresponds to the one of an electroweak multiplet. This has been computed in reference [83]
and it is of order 150MeV.

Accidental stability

In this model the Majorana nature of the fermionic fields forbids the presence of U(1) global
charges, i.e. the Majorana mass term breaks explicitly the global U(1) symmetries associated to
each species.

However, the renormalizable lagrangian has three accidental Z2 symmetries, acting on the
corresponding species12

ZN1
2 : ΨN1 → −ΨN1

ZN2
2 : ΨN2 → −ΨN2

ZV2 : ΨV → −ΨV

These symmetries guarantee, for each family, the stability of the lightest state containing an odd
number of dark quarks, the gluequarkχ.

The three symmetries can be combined into a global ZDC2 symmetry, which we shall call dark
parity :

ZDC
2 : ΨN1 → −ΨN1 , ΨN2 → −ΨN2 , ΨV → −ΨV

In this way, the stability of the dark matter candidate follows naturally from the renormalizability
of the theory, with no further ad-hoc symmetry requirement.

12The unspecified transformation rules, relative to the other fields, are intended to be the identity.
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At the non-renormalizable level, however, the above symmetries can be broken by higher
dimensional operators. If we consider our lagrangian as an effective field theory, all the higher
dimensional operators compatible with the symmetries of the model should be included. These
operators will be suppressed by powers of the cut-off scale of the theory ΛUV and give suppressed
contributions to low energy observables.

Nevertheless, if they are the only source of the breaking of an accidental symmetry, they give
the dominant contribution to the rate of processes violating this symmetry. In order to estimate
this rate one should understand what is the dimension of the lowest dimensional operator that
induces the breaking. The higher the dimension, the higher the suppression of the effect.

In order to break the ZDC
2 an operator has to include an odd number of dark quarks operators.

In addition, it has to be a gauge singlet and a Lorentz scalar.
The lowest dimensional operators that include an odd number of dark quarks and are dark

colour singlet are
ΨGµν , ΨΨΨ

and have dimension 7/2 and 9/2 respectively. These are fermionic operators; to have a Lorentz
scalar it is then necessary to include an other fermionic field, that should be a singlet of dark
colour and should have the right quantum numbers to give an operator that is a Standard Model
singlet.

For the triplet V , the lowest dimensional operator that satisfies these conditions is:

1

Λ2
UV

HσiLLσ
µνViGµν

where H is the Higgs doublet and LL is the left-handed lepton doublet and σi are the Pauli
matrices (with electroweak indices).

Similarly, for the singlets N1 and N2, the lowest dimensional operator built using only
Standard Model fields is:

1

Λ2
UV

HLLσ
µνN1Gµν ,

1

Λ2
UV

HLLσ
µνN2Gµν

These operators have dimension 6 and are suppressed by two powers of Λ2
UV. They induce the

decay of the gluequark , for example χ1 → Φ νL, with an estimated width of order:

Γχ ∼
1

4π

v2

Λ4
UV

M3
Q ∼ 10−50

(
MQ
TeV

)3(1015 GeV
ΛUV

)4

TeV

where v ≈ 174GeV is the Higgs vacuum expectation value. In order to have a cosmologically
stable candidate, we should compare its lifetime with the age of the universe τuniv ≈ 1017 s. This
translates into the requirement Γχ < 10−44 TeV. For dark quarks of mass MQ ∼ TeV and cut-off
ΛUV = MGUT ≈ 1015 GeV or higher, the bound is satisfied.

We point out that these operators can also generate neutrino masses through so called type 1
see-saw (singlet) and type 3 see-saw (triplet). Indeed, the composite states χ1 and χ2 have the
right quantum numbers to play the role of "right-handed neutrinos" (fermionic singlets), while
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χV can play the role of the fermionic triplet of the type 3 see-saw.

4.3.2 Model with two doublets and a singlet under SU(2)EW

Let us consider now a model in which the four adjoint Weyl fermions transform as two elec-
troweak doublets, with hypercharges ±1

2 , and the fifth is a Standard Model singlet. As before,
schematically:

Gauge group : SU(3)DC × SU(3)c × SU(2)EW ×U(1)Y

Fields : (adj; 1, 2)− 1
2

+ (adj; 1, 2) 1
2

+ (adj; 1, 1)0

We denote the two doublets as L1, L2 and the singlet as N . We shall refer to this model as the
LLN model.

The new fields contribute to the Standard Model β function: ∆bY = −16/3 and ∆b2 = −16/3,
therefore the model has no Landau poles below the Planck scale.

Writing as before the most general renormalizable lagrangian for this model in a two compo-
nents spinor notation we have

L = LSM −
1

4
GaµνGaµν −

1

2ξ

(
∂µA

a
µ

)2
+ (∂µc̄

a)
(
δac∂µ + gDCf

abcAbµ

)
cc

+ L†1 a,iiσ̄
µDab,ij

µ L1 b,j + L†2 a,iiσ̄
µDab,ij

µ L2 b,j +N †aiσ̄
µDab

µ Nb + Lmass

(4.33)

where the covariant derivative acting on the singlet is the same as before, while the one acting
on the doublet is

Dab,ij
µ = δabδij∂µ − δijigDCA

c
µ

(
T cadj

)ab − δabig2W
k
µ

(
σk
)ij
− δabδijigY Y Bµ

with Y = −1/2 for L1 and Y = 1/2 for L2.
The mass term, suppressing the indices which are intended to be properly contracted to give

gauge singlets and Lorentz scalars operators, can be written as:

−Lmass =ML

(
L1L2 + L†2L

†
1

)
+

1

2
MN

(
NN +N †N †

)
+ y1L1HN + y2L2H

cN + y∗1L
†
1H
†N † + y∗2(Lc2)†HN †

(4.34)

The Yukawa interactions, after the breaking of the electroweak symmetry, induce a mixing of
the neutral components of the doublets L1 and L2 with the singlet N . The mass of the charged
components of the doublets L1 and L2 is not affected by the Yukawa interactions and is given by
ML. The mass term for the three neutral states can be recast in a matrix form

−Lmass ⊃
1

2

(
L0

1 L0
2 N

) 0 ML y1v

ML 0 y2v

y1v y2v MN


L

0
1

L0
2

N

+ h.c.
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Let us assume for simplicity y1 = y2 = y. The mass term can be diagonalised by

Mdiag = UTMU

where U is a 3× 3 unitary matrix.
Defining ∆M = MN −ML, at the lowest order in the Yukawa couplings the mass term

becomes13:

−Lmass ⊃
1

2

(
N1 N2 N3

)ML 0 0

0 ML − 2 (yv)2

∆M 0

0 0 MN + 2 (yv)2

∆M


N1

N2

N3

+ h.c.

where N1

N2

N3

 = U †

L
0
1

L0
2

N

 =


−i√

2
i√
2

0

1√
2

1√
2
−
√

2y∗v
∆M

y∗v
∆M

y∗v
∆M 1


L

0
1

L0
2

N

 (4.35)

The Yukawa interaction with the Higgs boson in the flavour basis is given by

LYuk ⊃
(
L0

1 L0
2 N

)0 0 y

0 0 y

y y 0


L

0
1

L0
2

N

h(x) + h.c.

Differently from the Standard Model, in this model the Yukawa matrix is not proportional to the
mass matrix; therefore, going to the mass basis

Ymass = UTYflavU

we get flavour changing interactions mediated by the Higgs boson:

Ymass =

0 0 0

0 −4y2v
∆M

√
2y

0
√

2y 4y2v
∆M


Similarly, rotating the coupling to the Z bosons we get flavour changing neutral currents in the
dark sector

U †

−
1
2 0 0

0 1
2 0

0 0 0

U =


0 i

2
iyv√
2∆M

− i
2 0 0

− iy∗v√
2∆M

0 0


If ∆M > mh then the Yukawa interaction induces the decay N3 → N2 h with a decay width

ΓN3→N2 h =
y2

8π

√(
M2

3 −M2
2 −m2

h

)2 − 4M2
2m

2
h

2M2
3

13We are assuming yv � ∆M .



66 CHAPTER 4. MODELS WITH AN INFRARED FIXED POINT

Similarly, for the case ∆M < −mh, the Yukawa interaction induces the decay of N2 into N3.
In the intermediate range −mh < ∆M < mh the decay can proceed through a virtual Higgs

boson decaying to light Standard Model particles in the final state.
The interaction with the Z connects the states N3 and N1, inducing the decay of the heavier

one of the two.

Accidental stability

The renormalizable lagrangian for this model has some accidental symmetries. Differently from
the previous model, the individual ZL2 and ZN2 are broken explicitly by the Yukawa interactions.
However, dark parity is still a valid symmetry, i.e. there is a ZDC

2 symmetry acting only on the
fermionic fields of the dark sector.

This ensures the stability of the gluequark at the renormalizable level. At the level of non-
renormalizable interactions, we must include all the higher dimensional operators consistent with
gauge and Lorentz invariance.

The lowest dimensional operators odd under dark parity and that involves the doublet L1 or
the singlet N have dimension 6 and are respectively

1

Λ2
UV

L1GµνσµνecHc,
1

Λ2
UV

NGµνσµν lLH

where e and lL refer to the right-handed electron and lepton doublet of the Standard Model.
These operators induce the decay of the gluequarks, with a decay width that can be estimated,
similarly to the case previously analysed, as

Γχ ∼
1

4π

v2

Λ4
UV

M3
Q ∼ 10−50

(
MQ
TeV

)3(1015 GeV
ΛUV

)4

TeV

This corresponds to a lifetime longer than the age of the Universe for ΛUV ≥MGUT.
However, in this model it is possible to write a dimension 5 operator with an odd number of

dark quarks, involving the doublet L2:

1

ΛUV
La2σ

µνLLGaµν

where LL is the Standard Model electroweak doublet with hypercharge −1/2; the operator can
be written only for the L2 doublet which has hypercharge +1/2, .

This operator is suppressed only by one power of the ultraviolet cut-off scale ΛUV and it
induces the decay of the neutral mass eigenstates N1,2,3, through their mixing with L2. We can
estimate the decay width as

ΓNi ∼ |εi|2
1

4π

1

Λ2
UV

M3
Q ∼ |εi|210−33

(
MQ
TeV

)3(1019 GeV
ΛUV

)4

TeV

where εi is the mixing of the of the mass eigenstate Ni with the neutral component of the doublet
L2. We have |ε1,2|2= 1/2 and |ε3|2= (yv)2/(∆M)2 (see equation 4.35).
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For typical MQ and ΛUV, this corresponds to a lifetime of order τNi ∼ |εi|2106 s. For the
gluequarksN1 and N2 this is much smaller then the age of the universe; these two states are
unstable on cosmological scales and cannot be the dark matter candidate.

The state N3 can be stable on cosmological scales if the Yukawa coupling satisfies the condition

y . 10−5 ∆M

1TeV
(4.36)

The constraint we have obtained on y is quite strong even if the mass difference between the
dark quarks is large, ∆M ∼ O(1TeV). Although this is unpleasant, we note that also in the
Standard Model we observe small Yukawa couplings. For instance, the electron has ye ∼ O

(
10−6

)
.

Indeed, it is technically natural to have small Yukawa couplings: in the limit of zero Yukawas we
recover two additional symmetries: ZL2 and ZN2 , the Z2 symmetries acting on L-type or N-type
dark quarks separately.

We stress that even if we assume y1 6= y2, the previous constraint applies to the two Yukawa
couplings separately (i.e. even if one of the two vanishes). Indeed, we can understand the situation
in terms of symmetries: the Dirac mass term couples L1 and L2 at order one, so that there is a
unique symmetry ZL2 . If the singlet N is coupled to one of the two doublets through a Yukawa
coupling (it is sufficient to have one of the two Yukawas different from zero), the symmetries ZL2
and ZN2 are no longer valid individually; we are left with a single ZDC

2 . At the non-renormalizable
level, this symmetry is broken by the dimension 5 operator; a cosmologically stable dark matter
candidate can be obtained if the Yukawa couplings satisfy the condition 4.36.

Another possibility is that the coefficient in front of the operator is sufficiently small, with
no constraint on the Yukawa coupling. This circumstance would be technically natural, since in
this limit we recover the ZDC2 symmetry, but it is somehow contrary to the spirit of accidental
stability.

Lastly, we point out that this dimension 5 operator is peculiar of models with adjoint fermions.
Indeed, in models with fermions transforming as representations different from the adjoint the
operator ΨGµν is not a singlet. The lowest dimensional operator with an odd number of dark
quarks that is a singlet of dark colour is ΨΨΨ; therefore, non-renormalizable operators violating
dark parity can arise only at the level of dimension 6. For comparison, models realising vectorlike
confinement have baryonic dark matter candidates whose stability is ensured up to dimension 6
operators.

Custodial symmetry

Custodial symmetry is an approximate global symmetry in the Standard Model that explains, in
an elegant and conceptually clear way, the reason why the ρ parameter

ρ ≡ M2
W

cos2 (θW)M2
Z

is so close to unity [84].
Switching off gauge and Yukawa interactions, the Standard Model electroweak sector has an
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enhanced global symmetry:
SO(4) ' SU(2)L × SU(2)R

with the Higgs boson transforming as a fundamental representation φ = 4 of SO(4) or, equivalently
a H = (2, 2) of SU(2)L × SU(2)R, where we use the following notation:

H =

(
φ1 + iφ2

φ3 + iφ4

)
φ =


φ1

φ2

φ3

φ4

 H =
(
Hc H

)

At the global level the pattern of symmetry breaking induced by the Higgs field acquiring a
vacuum expectation value 〈φ3〉 = v is

SO(4)→ SO(3)

The number of Goldstone bosons is given by the number of broken generators: 6− 3 = 3. The
three Goldstone bosons transform as a triplet of SO(3).

The gauging of the group SU(2)L alone14 does not break the custodial symmetry. But now,
the vacuum expectation value of the Higgs field induces the Higgs mechanism for SU(2)L; the
gauge fields associated to the three broken generators acquire all the same mass MW .

Switching on the hypercharge gauge group U(1)Y induces an explicit breaking of the custodial
SO(3). At tree level this gives the following relation

MW = cos (θW )MZ

This tree level effect due to the breaking of custodial symmetry is reabsorbed in the definition of
the ρ parameter so that at tree level one has ρ = 1. Further corrections to the ρ parameter must
be induced by loop diagrams involving hypercharge insertions or by further source of custodial
symmetry breaking.

Let us consider the Yukawa couplings in the Standard Model:

LY uk = YuQ̄LH
cuR + YdQ̄LHdR

They induce an explicit breaking of the custodial symmetry for Yu 6= Yd. However, if we were in
the situation Yu = Yd, we could arrange the right handed quarks in a doublet of SU(2)R(

uR

dR

)
= (1, 2)

and restore custodial symmetry. In particular, one finds that the corrections to the ρ parameter
14We set to zero for the moment the gauge coupling associated to the hypercharge, i.e. gY = 0.
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are proportional to the strength of symmetry breaking effects

∆ρ ∝ (Yu − Yd)

Similarly, in the LLN model we just analysed, one should understand if custodial symmetry is
preserved or broken by the mass term and by Yukawa interactions 4.34.

The dark sector has an SO(4) global symmetry, that can be viewed as a subgroup of the
SU(5) symmetry group that there would be if MN = ML = 0. We can organise the dark quarks
in the following representations of SO(4) = SU(2)× SU(2):

L =
(
L1 L2

)
= (2, 2) N = N = (1, 1)

The mass term can then be rewritten as

ML

(
L1L2 + L†2L

†
1

)
+

1

2
MN

(
NN +N †N †

)
=

1

2
MLL

j
iL

l
kε
ikεjl +

1

2
MNNN + h.c.

and therefore it preserves the custodial SO(4) = SU(2)× SU(2). The Yukawa interaction preserve
the custodial symmetry only if y1 = y2 = y. Indeed in this case we can write the lagrangian as

1

2
MLL

j
iH

l
kε
ikεjl

We conclude that also in this case, the corrections to the ρ parameter (and to the closely related
T̂ parameter) are proportional to the difference of the Yukawa couplings:

∆ρ ∝ ∆T̂ ∝ (y1 − y2)
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Chapter 5

Phenomenology

We shall study the phenomenology of the two models described in the previous chapter, with an
emphasis on the cosmological history and the constraints deriving from cosmological observations.
For each model we build a phase diagram, as a function of the quark mass and confinement scale.
As we shall see these models exhibit a very reach phase diagram with many different regimes and
physical mechanisms describing their cosmological history. All the calculations outlined in this
overview are done for the two models described in chapter 4, which are representative models
with and without renormalizable interaction involving the Higgs field in the dark sector.

The different regimes are characterised by the lifetime of the glueballs: if they are stable on
cosmological scales they could be a dark matter component. It is then important to evaluate
their relic abundance and the phenomenological consequences on cosmological observables.

To identify the parameter space region in which glueballs are stable on cosmological scales,
we estimate the lifetime of the glueballs (section 5.1). We use an effective field theory approach,
matching to the fundamental theory at the confinement scale. We then discuss what are the
phenomenological constraints for the parameter space region in which the glueballs are unstable
and decay with a lifetime smaller than the age of the Universe.

Next, we want to evaluate the glueball relic density. As we shall see the glueball relic density
is proportional to the entropy ratio between the two sectors at the moment of kinetic decoupling.
Therefore, we need to estimate the temperature of kinetic decoupling between the dark and the
visible sector (section 5.2). This is the temperature below which the two sectors are no longer in
thermal equilibrium and their temperatures evolve independently.

In section 5.3 we compute the glueball relic density. The glueball sector exhibits cannibalism
and its thermal history is non-standard. We analyse in detail the relevance of the bounds coming
from BBN and CMB observations. In particular, we explore the possibility that the glueballs
are a dark matter component, briefly discussing the constraint coming from galaxy formation
and from the knowledge of the matter power spectrum. We conclude that, in our models, this
possibility is not consistent with the observations, excluding the parameter space region with
stable glueballs. However, we point out a possible route to obtain glueball dark matter in a
concrete model, without assuming a cosmologically secluded dark sector.

We then consider the parameter space region in which the glueballs are unstable and decay

71
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before BBN. The only state of the dark sector which is stable on cosmological scales is the
neutral gluequark . In section 5.4 we evaluate its thermal relic abundance. We first compute the
annihilation cross section - this is a non-trivial calculation (due to the non-abelian structure of
the gauge theory). We then include the non-perturbative corrections due to the Sommerfeld
enhancement and compute the relic density through an approximate solution to the Boltzmann
equation. At last we compare the results obtained in our model to the ones of other classes of
models studied in the literature, pointing out what are the main differences and why this model
could be an interesting scenario.

5.1 Glueballs decay

Neglecting higher-dimensional operators generated at the UV cut-off scale, dark quarks interact
with the Standard Model through gauge interactions and Yukawa terms if allowed by their
quantum numbers. We want to estimate the decay rate of dark glueballs in Standard Model
particles. To do so, we take advantage of the separation of scales between MQ and ΛDC

(MQ � ΛDC), proceeding in two steps:

◦ we integrate out the heavy dark quarks at the scale MQ. Matching to the effective field
theory describing dark gluons interactions with Standard Model particles, we write an
effective operator describing interaction between dark gluons and Standard Model particles;

◦ below the confinement scale ΛDC we write an effective lagrangian for the glueballs and their
interaction with Standard Model particles.

The resulting vertex is then used to estimate the decay rate of glueballs into Standard Model
particles.

To complete the matching procedure, we should know the glueball to vacuum matrix element
of the gluonic operator. This parameter must be computed at energies of the order of the
glueballs mass and non-perturbative methods are needed. In what follow we shall use lattice
results obtained for QCD and extrapolated for use with our model.

The glueball spectrum in QCD has been predicted through lattice calculations [76–78]. The
lightest glueball is a state with quantum numbers JPC(Φ) = 0++ and massMΦ = 1750±150 MeV.

Similarly, the glueball to vacuum matrix element of local gluonic operators has been determined
numerically. For the scalar operator one has [77,85]

F = 〈0| g2 Tr(GµνGµν) |Φ〉 = 15.6± 3.2 (GeV)3

These values have been obtained from lattice simulations of a pure gauge SU(3) theory with
confinement scale ΛQCD ∼ 260 MeV, corresponding to the confinement scale of the physical
Quantum Chromodynamics [86]. Rescaling by ΛDC we obtain results which are valid in general
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for our SU(3)DC models. We obtain

MΦ ∼ 7 ΛDC (5.1a)

F ∼ 103 (ΛDC)3 (5.1b)

We shall use these results to estimate the glueball decay rates in the two models of interest.

5.1.1 VNN model

In this model there are no Yukawa interactions in the dark sector, therefore the glueball decay
proceeds only through gauge interactions. By inspection, the lowest dimensional local operator
generated below MQ that induces glueball decay has dimension 8 and is generated through a
box diagram with a loop of heavy fermions:

O8 =
(
Gaµν

)2(
W i
ρσ

)2
To estimate the decay width of the glueball induced by the operator O8 we use an effective field
theory approach.

The first step of the matching procedure is done choosing the coefficient of the effective
operator O8 so that the value of the amplitude for the annihilation of two dark gluons in two
Standard Model gauge bosons (at energies much smaller than MQ) is reproduced.

The effective lagrangian at energies below MQ is:

Leff ⊃ c8NDC
g2

DC

16π2
g2

2

1

M4
Q

(
Gaµν

)2(
W i
ρσ

)2
where c8 is a dimensionless parameter deriving from the matching condition.

Let us consider the regime MΦ < 2MW± . In this case the main decay mode is to photons
and there is a suppression factor sin2 (θW ). Equivalently, we make the substitution

g2
2

(
W i
ρσ

)2 −→ e2(Fµν)2

Below the confinement scale we can write an effective lagrangian for the glueballs: the gluonic
scalar operator

(
Gaµν

)2 interpolates between the vacuum and the glueball state Φ. Parametrising
the matrix element as F = 〈0| g2

DC Tr(GµνGµν) |Φ〉 we obtain the effective vertex:

Lφγγ = c8NDC
F

M4
Q

e2

16π2
Φ(Fµν)2 (5.2)

The decay width can then be estimated as

ΓΦ→γγ ∼ 2π(c8)2α2
em

N2
DC

(16π2)2

1

M8
Q
F 2M3

Φ

where we have include a factor of 1/2 for identical particles in the final state. This estimate is in
agreement, up to the factor c8, with the results of reference [87].
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For NDC = 3, using the numerical values of equation 5.1 taken from lattice simulations, and
the value of c8 computed in reference [87] we obtain:

ΓΦ→γγ ∼ 2 · 10−2 (ΛDC)9

(MQ)8
(5.3)

In the regime MΦ > 2MZ , we must take into account the decay modes in W± or Z bosons.
Three body decays Φ→Wlν, Φ→ Zll are suppressed by a factor (MΦ/MW )4(g2

2/16π2) and we
neglect them since we are interested in an order of magnitude estimate. Neglecting phase space
factors we have

ΓΦ→ZZ ∼
cos4 (θW )

sin4 (θW )
ΓΦ→γγ ∼ 3 · 10−1 (ΛDC)9

(MQ)8

ΓΦ→WW ∼ 2
1

sin4 (θW )
ΓΦ→γγ ∼ 8 · 10−1 (ΛDC)9

(MQ)8

5.1.2 LLN model

Differently from the previous case, the model with two electroweak doublets and a singlet, includes
also Yukawa couplings with the Higgs field (see equation 4.34). These terms can induce the decay
of the glueball through a dimension 6 effective operator

O6 =
(
Gaµν

)2
H†H

If the glueball has a mass MΦ > 250GeV, the decay in two Higgs bosons is kinematically
allowed. Integrating out the heavy fermions and matching as described above, we arrive at the
effective interaction

LΦ→hh ∼ NDC
y2

16π2

F

M2
Q

Φh2

giving rise to a decay width

ΓΦ→hh ∼
1

8π
y4 N2

DC

(16π2)2

1

M4
Q
F 2 1

MΦ

The decay in WW , ZZ give a comparable contribution [88].
If MΦ < 250GeV, the decay can proceed through a virtual Higgs boson decay to Standard

Model particles, with the second Higgs field acquiring a vacuum expectation value v1.
In order to match to the effective field theory, we need to evaluate the amplitude for this

process; this can be factorised as

A(Φ→ SM) ∼ NDC
y2

16π2

F

M2
Q

v

M2
Φ −m2

h

A(h∗ → SM)

where h∗ is the virtual Higgs boson. Since h∗ carries all the momentum of the incoming glueball
1In the mass range 125GeV < MΦ < 250GeV there is also the three body decay with an on-shell Higgs boson

plus a virtual one decaying to a couple of fermions. However this is suppressed by a factor M2
Φ/(16π2v2) and

gives a subleading contribution.
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(Q2 = M2
Φ), this amplitude is equivalent to the one for the decay of an Higgs-like boson with mass

MΦ in Standard Model particles. This amplitude has a strong dependence on MΦ, especially in
the mass range MΦ > 100GeV. For a detailed study see, for instance, reference [88].

Between 100GeV and 250GeV there are various channels that give a comparable width. Near
250GeV the dominant channel is the decay in a couple of W bosons.

In the mass range 2mb < MΦ < 100GeV, the dominant decay channel is in a pair of b quarks
h∗ → bb̄. The effective lagrangian is

LΦb̄b ∼ NDC
y2

16π2

F

M2
Q

v

M2
Φ −m2

h

yb Φb̄b

giving a decay width

ΓΦ→b̄b ∼
3N2

DC

4π

y4

(16π2)2

F 2

M4
Q

MΦ(
M2

Φ −m2
h

)2m2
b

where colour factors have been taken into account. Our result is in agreement with that of
reference [89].

In the range of masses near 2mb there are various thresholds and relevant channels (c̄c, ττ).
Glueballs decay in two gluons should also be considered, becoming relevant for masses in the
range 2mπ < MΦ < 2mb.

The decay of the virtual Higgs boson in gluons proceeds at one-loop and in order to estimate
its amplitude we use again an effective field theory approach, integrating out the quarks heavier
than MΦ. The coefficient of the effective operator inducing the decay of the Higgs can be
estimated using Naive Dimensional Analysis [90–92]:

Lh∗gg ∼
∑
i

Nc
yi
mi

g2
s

16π2
h∗
(
Gaµν

)2
where the sum runs on all the quarks heavier than MΦ. The powers of the Yukawa coupling yi
and of the mass mi are dictated by NDA, and the loop factor g2

s
16π2 account for the fact that the

coupling arises only at one-loop level. Using the relation mi = vyi we arrive at

Lh∗gg ∼
∑
i

Nc
1

v

g2
s

16π2
h∗
(
Gaµν

)2
We see that all the quarks heavier than the glueball contribute the same amount to the decay
amplitude in gluons, as a result of the cancellation between the suppression 1

mi
and the enhance-

ment yi for each heavy quark. This is the so called non-decoupling effect, well-known in Higgs
physics. Therefore, from the sum we get a factor Nhq which corresponds to the number of quarks
heavier than MΦ.

We arrive at the effective lagrangian

LΦgg ∼ 3NDCNhq
y2

16π2

g2
s

16π2

F

M2
Q

1

M2
Φ −m2

h

ΦGµνGµν
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which gives the decay width

ΓΦ→gg ∼
9N2

DCNhq

4π

y4

(16π2)2

g4
s

(16π2)2

F 2

M4
Q

M3
Φ(

M2
Φ −m2

h

)2
The decay into photons, in addition to the contribution given by the operator O8 (equation 5.2),
gets a contribution mediated by the Higgs field through the operator O6. This can be estimated
similarly to what we just did for the decay into gluons, including an additional contribution due
to a loop with W bosons.

We obtain the effective lagrangian:

LΦγγ ∼
(
NDC

F

M4
Q

e2

16π2
+NDC

∑
i

y2

16π2

Q2
i e

2

16π2

F

M2
Q

1

M2
Φ −m2

h

)
ΦFµνFµν (5.4)

where the sum runs on the fermions heavier than MΦ (both leptons and quarks2) and on the W
boson.

For Yukawa couplings of order y ∼ 10−5 or lower, required in order to have cosmologically
stable relics, the contribution from the dimension 8 operator O8 discussed in the previous section
dominates, and the glueballs have a similar lifetime to that discussed in the previous section.

5.1.3 Constraints on glueballs decay

Cosmological and astrophysical observations give tight constraints on the decay of long lived
thermal relics, that exclude a portion of the parameter space of the models we are considering.

We can identify three different regimes:

◦ the glueballs are stable on cosmological scales, corresponding to the condition τΦ > τuniv.
We shall consider this scenario in the following two section. In this case we need to evaluate
the glueballs relic density and see if they can be a dark matter component and if their
presence as thermal relics is compatible with cosmological constraints (number of relativistic
degrees of freedom at the epoch of BBN and CMB) and astrophysical observations (structure
formation).

◦ the glueballs are long-lived and decay during or after BBN. This possibility is strongly
constrained as we shall analyse in this paragraph.

◦ the glueballs decay quickly, i.e. before the onset of the Big Bang Nucleosynthesis . In order
to be consistent with the observations, a lifetime τΦ < 1 s⇒ ΓΦ > 10−27 TeV is required.
This situation is basically unconstrained since the earliest cosmological data correspond to
the epoch of BBN.

The region in which the glueballs are not cosmologically stable corresponds to the condition

τΦ < τuniv = 1017 s⇒ ΓΦ > 10−44 TeV
2The colour multiplicity factor Nc must be included for each quark, but not for leptons.
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In our models, for dark quarks with mass MQ & 1TeV, the calculation of the previous paragraph
tells us that this condition is realised for confinement scales ΛDC & 35MeV. Therefore, in the
regime in which the glueballs are long-lived decaying relics, they are already confined at the
epoch of Big Bang Nucleosynthesis TBBN ≈ 1MeV.

The limits on the number of relativistic degrees of freedom at the epoch of BBN do not
apply in this case, but primordial light-elements abundances, predicted by BBN, give other
strong constraints on relics decaying electromagnetically and hadronically [93]. In our case,
cosmologically unstable glueballs have masses MΦ ∼ 7ΛDC & 250MeV and can thus decay both
electromagnetically and hadronically (with a smaller branching ratio). The bounds inferred from
BBN observations depend on the number density of glueballs and are expressed in terms of the
relic abundance the decaying relics would have if they were stable [93]. In the mass range we are
considering, the relic abundance of glueballs would be very large ΩΦh

2 & 5 · 106, as we will see in
section 5.3; therefore, the strongest constraint of reference [93] applies, excluding the parameter
space region in which glueballs have a lifetime 1 s < τΦ < 1012 s.

An independent bound on long lived glueballs comes from observations of the diffuse gamma
rays spectrum [94]. For the mass range and would-be relic abundance of interest, the data
exclude the region 1012 s < τ < 1017 s, closing the window in the parameter space with long-lived
unstable glueballs.

Summarising, these observations rule out the parameter space region in which glueballs are
long-lived, i.e. have a lifetime 1 s < τΦ < 1017 s.

5.2 Kinetic decoupling

At high temperatures, in the early universe, the dark sector and the Standard Model sector are in
thermal equilibrium. Elastic scattering processes involving particles of both sectors keep the two
in equilibrium until the rate of these interactions becomes smaller than the Hubble parameter,
that is the expansion rate of the universe. This moment in the thermal history of the universe is
called kinetic decoupling.

It is important to differentiate kinetic decoupling from chemical decoupling. This corresponds
to the moment at which number changing processes (such as dark matter annihilation QQ → ff ,
where f is a Standard Model fermion) cease to be efficient. Chemical decoupling is usually
involved in the calculation of the thermal relic density of dark matter candidates, as we shall
do in section 5.4. However here we are addressing a different issue: we want to estimate the
temperature at which the two sectors are no longer in thermal equilibrium. As we shall see,
thermal equilibrium can last much longer than chemical equilibrium.

The crucial difference is in the observation that the rate for a number changing process
QQ → ff is σvnnon−rel, where nnon−rel is the density of targets Q which is suppressed by
a Boltzmann factor, while elastic processes such as Qf → Qf have a rate σv nrel with no
suppression, since now the density of targets refers to light Standard Model fermions (nrel ∼ T 3).
Therefore, we expect Tkd � Tchem ∼MQ/20. Indeed we shall find that the kinetic decoupling
temperature is of order Tkd ∼ 100MeV. We note that the region with cosmologically stable
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glueballs corresponds to confinement scales smaller than the kinetic decoupling temperature;
therefore, in our calculation we consider deconfined dark quarks and not gluequarks .

There are different processes that can contribute to the elastic cross section of dark sector
and Standard Model particles. Since, as we have just anticipated, kinetic decoupling temperature
is small, we consider only light Standard Model particles in the final state. At tree level, charged
particles in the dark sector can interact through electromagnetic and weak interactions, while the
neutral ones interact through weak interactions mediated by the Z boson. Interactions involving
the Higgs boson (present in the LLN model) are suppressed by the Yukawa couplings of light
fermions and are therefore negligible.

The dark quark corresponding to the neutral component of an electroweak multiplet has
an induced magnetic dipole moment. However, this is a one-loop effect involving electroweak
interactions. We can estimate the magnetic moment as

µQ0 ≈ g2
2

M2
W

e

16π2
MQ0 =

GF√
2

MQ0me

π2
µB =⇒ µQ0 ≈ 4 · 10−7

(
MQ0

1TeV

)
µB

where µB = eh̄/2mec is the Bohr magneton. The electromagnetic scattering scattering cross
section induced by this interaction is subdominant with respect to the weak interaction (in the
relevant temperature regime) and therefore we neglect it.

At temperatures lower than the electroweak scale the two relevant processes have respectively
a cross section:

σweak(Qf → Qf) ∼ 1

4π
G2
FT

2 σem

(
Q±f → Q±f

)
∼ 4π

α2
em

T 2
(5.5)

For typical dark quark masses MQ ∼ O(1)TeV, the weak cross section gives the leading effect for
temperatures T ≥ 100MeV.

At lower temperatures the electromagnetic interaction of the charged relics would dominate.
At temperatures higher then the mass difference MQ± −MQ0 , the two species are both relevant
and electromagnetic interactions can be efficient in guaranteeing thermal equilibrium. However,
the charged component Q± is expected to be heavier then the neutral candidate Q0 and to decay
into the neutral one through weak interactions. At temperatures T < (MQ± −MQ0) the density
of charged species drops and only the weak interactions of Q0 can be efficient, with cross section
σweak ∼ G2

FT
2/4π.

In our models, as we discussed in section 4.3, typically the mass difference of the charged
and neutral component of an electroweak multiplet is (MQ± −MQ0) ∼ 150MeV > 100MeV,
therefore we can consider the weak cross section σweak as the relevant one in determining the
kinetic decoupling.

To estimate the kinetic decoupling temperature we proceed as follows (our discussion is based
on the one in reference [95]; for a more rigorous treatment see [96]).

We need to compare the rate at which elastic scattering reactions are efficient in establishing
kinetic equilibrium with the Hubble expansion rate.

Let us consider two gases at the same temperature T : one of relativistic particles (standard
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model photons and light fermions) with typical energy and momentum T and one of non-
relativistic (cold) dark quarks3 with typical momentum p ∼ √MQT , given by the equipartition
theorem.

The typical momentum transfer per collision is δp ∼ T . The relative momentum transfer in a
single elastic scattering event is then, in average

δp

p
∼
(

T

MQ

) 1
2

� 1

In order to keep the dark quarks in thermal equilibrium, we need an order one relative change in
momentum δp ∼ p. Therefore, a single scattering process is not sufficient and we need a large
number of interactions. This results in a suppression of the effective rate of elastic collisions that
give kinetic equilibrium.

Since thermal equilibrium is a stochastic process, after Ncoll collisions the momentum will be
changed by (

δp

p

)
TOT

∼
(
δp

p

)
(Ncoll)

1
2

Accordingly, we can estimate the average number of collisions needed to establish kinetic
equilibrium as

Ncoll ∼
MQ
T

Let us assume that we are at temperatures T > 100MeV, so that the elastic cross section is
σweak. Comparing the rate of effective collisions with the Hubble rate we obtain the temperature
of kinetic decoupling

nrel σtc
1

Ncoll
∼ H

Using the Friedmann’s equation in the radiation dominated epoch

H2 =
8πGN

3
ρ⇒ H ≈ T 2

MPl

we have

T 3 1

4π
G2
FT

2 T

MQ
∼ T 2

MPl

We arrive at the following order of magnitude estimate for the kinetic decoupling temperature

Tkd ∼ 50MeV
(
MQ

1TeV

) 1
4

Therefore we can conclude that
Tkd ∼ O(100)MeV

Below this scale, the two sectors are no longer in thermal equilibrium and their temperatures
evolve independently. There is, however, a caveat to this conclusion: after confinement, in

3We neglect the dark gluons thermal bath, since at low energies their interactions with standard model particles
proceed through irrelevant (i.e. higher dimensional) operators.
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the dark sector the asymptotic states are glueballs and gluequarks . χ is stable thanks to an
accidental symmetry as discussed in section 4.3, whereas glueballs can decay to Standard Model
particles. If the decay is fast, what happens is that the entropy density of the dark gluons at
the time of confinement is completely transferred to the radiation in the standard sector. This
results in a reheating, i.e. an increase of the temperature and of the radiation energy density in
the standard model sector.

5.3 Glueballs relic density

We shall calculate the relic density of glueballs in the region of the parameter space in which the
glueballs are stable on cosmological scales (as described in section 5.1).

As the universe cools down, the dark sector and the Standard Model go out of thermal
equilibrium at a temperature Tkd ∼ 100MeV, as described in the previous section. In the following
all the primed symbols will refer to quantities relative to the dark sector, while unprimed symbols
will refer to Standard Model quantities (i.e. T ′ is the temperature of the dark sector and T is
the temperature of the Standard Model sector).

After kinetic decoupling the temperatures in the two sectors evolve independently and the
entropy is separately conserved in each sector.

In particular, the ratio of the comoving entropies in the two sectors has a constant value

ξ =
s

s′
= constant (5.6)

In our model the dark sector corresponds to an SU(3)DC gauge theory with 5 adjoint fermions and
it is in thermal equilibrium with the baryonic thermal bath until Tkd. At this temperature, the
entropy density in the Standard Model sector [97] can be expressed as a function of the effective
number degrees of freedom g (a function of the temperature), parametrising the contribution of
relativistic and non-relativistic species:

s =
2π2

45
gT 3

If Tkd > T ′conf ≈ ΛDC, the dark sector is unconfined at kinetic decoupling and its entropy
is dominated by the relativistic degrees of freedom (the dark gluons), which correspond to
g′kd = 2(N2

DC − 1) = 16 .
The entropy ratio is then fixed at this temperature by

ξ =
gkdT

3
kd

g′kdT
′3
kd

=
gkd
g′kd

(5.7)

Since the kinetic decoupling temperature Tkd ∼ O(100)MeV is near the temperature at which
the QCD phase transitions undergoes, the number of effective relativistic degrees of freedom
at kinetic decoupling has a big uncertainty, being in the range 15 ≤ gkd ≤ 65. This gives a ξ
parameter in the range

1 . ξ . 4 (5.8)
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At temperatures T ′conf < T ′ < Tkd both the dark sector and the Standard Model entropies are
dominated by radiation. Entropy conservation then gives

s ∼ gT 3 ∝
1

a3
(5.9)

and similarly for the dark sector. The number of relativistic degrees of freedom in the dark sector
g′ does not change until confinement and so T ′ ∝ 1

a .
At the dark confinement scale, the gluons confine in glueballs. Energy is conserved and the

energy density of relativistic gluons gets converted in energy density of glueballs. Therefore we
have

ρ′Φ,conf =
π2

30
2
(
N2

DC − 1
)
T
′4
conf =

8

15
π2T

′4
conf (5.10)

After the confinement transition, the dark sector is made up of non relativistic particles only:
glueballs and gluequark .

If the glueballs are stable on cosmological scales, it is important to evaluate if they can
account for a part of the dark matter and what are the bounds from cosmological observations.
We shall now evaluate their relic density and discuss if there are regions of the parameter space
with stable glueballs that are phenomenologically viable.

5.3.1 No number changing interactions

Let us compute first the relic density of glueballs neglecting number changing interactions in the
glueball sector.

ρ′Φ,0 = MΦ n
′
0 = MΦ n

′
conf

(
aconf

a0

)3

= ρ′Φ,conf

(
aconf

a0

)3

= ρ′Φ,conf

s0

sconf
= ρ′Φ,conf

s0

s′conf ξ

(5.11)

Using the principles of thermodynamics one can show (see for example [97]) that in the expanding
Universe, the entropy density is given by

s =
ρ+ P − µn

T
(5.12)

where P and µ denote the pressure and the chemical potential respectively. At the confinement
we have µ, P ≈ 0 and therefore

ρ′Φ,conf

s′conf

= T ′conf

Using this relation we finally arrive at

ρ′Φ,0 = s0
T ′conf

ξ
(5.13)

In this regime dark matter is non relativistic and its temperature evolve as T ′ ∝ 1
a2 .
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5.3.2 Cannibalism in the glueball sector

The glueball sector can experience a phase of so called cannibalism if number changing reactions
in the dark sector keep the glueballs in chemical equilibrium with vanishing chemical potential.

This scenario is different from the standard cold dark matter paradigm and has been studied for
the first time in [98] and reconsidered recently in a different perspective in [99,100] and [101,102].
In the usual cold dark matter scenario, the number changing reactions involve the annihilation of
dark matter in Standard Model particles and the number of dark matter particles per comoving
volume remains constant when this interaction becomes inefficient. This happens when the dark
matter is already non relativistic (usually Tfo ∼Mχ/25) but the two sectors are still in thermal
equilibrium.

In the scenario with cannibalism, what happens is that number changing interactions in the
dark sector are efficient even after kinetic decoupling has occurred. Since the two sectors are out
of equilibrium, their temperatures evolve independently and their entropies per comoving volume
are separately conserved.

When a number changing reaction occurs (for instance a process 3→ 2), the energy stored
in the rest mass of a glueball is redistributed as kinetic energy, reheating the dark sector. As a
result, the dark sector temperature decreases only logarithmically as a function of the scale factor
and the glueball energy density has an unusual scale dependence with respect to the standard
cold dark matter.

Number changing interactions are usually expected to be present in the glueball sector of a
confining gauge theory. Writing an effective action for the glueballs below the confinement scale,
Naive Dimensional Analysis [90–92] gives

LΦ =
1

2
(∂µΦ)2 − M2

Φ

2
Φ2 +

c3

3!

4π√
NDC

MΦΦ3 +
c4

4!

16π2

NDC
Φ4 + · · · (5.14)

where the coefficients ci are expected to be O(1) factors and we assumed that in the non-
perturbative region T ′ < ΛDC the theory is in a strong coupling regime : gDC ∼ 4π√

NDC
.

We shall now derive the scaling law of temperature and energy density during the cannibal
phase and the relic density of stable glueballs.

The confinement temperature is T ′conf ∼ ΛDC < MΦ, glueballs are non relativistic when they
are formed. When number changing interactions are efficient, glueballs number density is given
by the thermal expression

n′ = g′
(
MΦT

′

2π

) 3
2

e−
MΦ
T ′ (5.15)

Moreover, the chemical potential is zero during this phase and the pressure is zero for non
relativistic particles, so from equation 5.12 we obtain:

s′ =
MΦn

′

T ′
= g′

MΦ

T ′

(
MΦT

′

2π

) 3
2

e−
MΦ
T ′ (5.16)
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Entropy conservation then gives:

s′a3 = const =⇒ ā3 ≡ (2π)
3
2

g′M3
Φ

s′a3 = a3

(
T ′

MΦ

) 1
2

e−
MΦ
T ′

where ā is a dimensionless constant. Neglecting the polynomial dependence on the temperature
we arrive at the scaling law:

T ′

MΦ
∼ 1

3 log
(a
ā

) ⇐⇒ a

ā
∼ e

MΦ
3T ′ (5.17)

Again using equation 5.12 and entropy conservation we arrive at the scaling law for glueball
energy density during the phase with cannibalism

s′ =
ρ′

T ′
∝

1

a3
=⇒ ρ′ = s′T ′ ∝

a3

log
(a
ā

) (5.18)

The phase with cannibalism ends when the rate of number changing interactions in the dark
sector becomes smaller than the Hubble rate and chemical equilibrium is lost. This process is
known as chemical decoupling, and after it occurs the number of glueballs per comoving volume
is fixed.

The glueball density at chemical decoupling can be computed as

ρ′Φ,d = ρ′Φ,conf

(
aconf

ad

)3 log
(
aconf
ā

)
log
(
ad
ā

)
where aconf is the scale factor at dark confinement and ad is the scale factor at chemical decoupling.

The present day relic density can then be obtained by rescaling (the number of glueballs per
comoving volume is fixed)

ρ′Φ,0 = ρ′Φ,conf

(
aconf

ad

)3 log
(
aconf
ā

)
log
(
ad
ā

) (ad
a0

)3

= ρ′Φ,conf

(
aconf

a0

)3 log
(
aconf
ā

)
log
(
ad
ā

)
Using the scaling law for the dark sector temperature (equation 5.17) we arrive at

ρ′Φ,0 = ρ′Φ,conf

(
aconf

a0

)3 T ′d
T ′conf

(5.19)

Comparing with equations 5.11 and 5.13 we obtain the expression

ρ′Φ,0(cannibalism) = ρ′Φ,0(no cannibalism)
T ′d
T ′conf

= s0
T ′conf

ξ

T ′d
T ′conf

= s0
T ′d
ξ

(5.20)

We stress here that even though the dark sector cools down more slowly than in the case without
cannibalism, the glueball energy density is smaller. This fact can be understood intuitively: for a
non relativistic species, the energy density is given by the number density times the mass of the
particle. Number changing reactions deplete the number of glueballs, while the increased kinetic
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energy is not enough to bring up the temperature of the dark sector that keeps cooling down due
to the Hubble expansion, even though more slowly. The net result is a lower relic density for the
glueballs.

The ratio between mass and temperature at chemical decoupling has been computed in [98].
As for the usual freeze-out of cold dark matter, it depends only logarithmically on the strength
of the interaction and typically one has MΦ

T ′d
∼ O(20− 40).

Multiplying and dividing by MΦ we can write the glueball relic density as a function of the
glueball mass

ρ′Φ,0 = s0
MΦ

ξ

(
T ′d
MΦ

)
The Standard Model sector entropy today is dominated by the CMB radiation that is well
measured by the Planck satellite and is given by s0 = 2.9× 103 cm−3. Dividing the relic density
by the critical density4 ρcrit ≡ 3H2

0
8πG = 10−5 h2 GeV cm−3 we obtain the present day density

parameter for the glueballs

Ω′Φ,0h
2 = 0.3

MΦ

ξ eV

(
T ′d
MΦ

)
(5.21)

Validity of the relic density calculation

The calculation of the glueball relic density presented in the previous section relies on the
assumption that the glueballs have enough time to cool down and arrive at the decoupling
temperature. However, since the temperature dependence on the scale factor is only logarithmic
in the glueball sector, we have to verify if this is the case.

We consider the logarithmic evolution of the dark sector temperature in the era in which
number changing interactions are efficient and find what would be the present day temperature
if there were no decoupling: T ′log(a = 1). In order for the decoupling to have occurred, this
temperature must be smaller than the decoupling temperature: T ′log(a = 1) < T ′d.

T ′log(a) ∼ MΦ

3 log
(
a
ā

)
At confinement we have:

T ′log(aconf) ∼ ΛDC ≈
MΦ

7
⇒ 3 log

(aconf

ā

)
= 7⇒ aconf = āe

7
3

It is easy to relate the temperatures in the two sectors at the moment in which dark confinement
occurs:

gkdT
3
kd

gconfT
3
conf

=
a3

conf

a3
kd

=
T ′kd
T
′3
conf

from which we obtain

T ′conf =

(
gconf

gkd

) 1
3

Tconf ≈ Tconf

4h is the reduced Hubble constant: H0 ≡ 100h km s−1 Mpc−1
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We can then derive an expression for the scale factor at confinement

Tconf ≈ T ′conf ∼
MΦ

7
⇒ 1

aconf
∼ MΦ

7TCMB

Putting all together we arrive at

T ′log(a = 1) =
MΦ

3 log

(
1

aconf e
− 7

3

) =
MΦ

3 log

(
1

aconf

)
+ 7

=
MΦ

3 log

(
MΦ

7TCMB

)
+ 7

(5.22)

For a typical decoupling temperature T ′d ∼ MΦ
30 we have the inequality

T ′log(a = 1) < T ′d ⇒
MΦ

3 log
(

MΦ
7TCMB

)
+ 7

<
MΦ

30
⇒MΦ > 7e8TCMB

Using the CMB temperature TCMB = 2.73K = 0.25meV we find that the result 5.21 is valid
only for cosmologically stable glueballs of mass

MΦ & 5 eV (5.23)

For glueballs of lower mass, the equation for the relic density must be modified replacing the
decoupling temperature with the present day dark sector temperature

Ω′Φ,0h
2 = 0.3

MΦ

ξ eV

(
T ′log(a = 1)

MΦ

)
= 0.3

MΦ

ξ eV

 1

3 log
(

MΦ
7TCMB

)
+ 7

 (5.24)

This formula for the relic density is valid for glueball masses such that confinement has
occurred before today, that is Tconf > TCMB. The range of validity is

MΦ ∼ 7ΛDC ∼ 7T ′conf = 7

(
gconf

gkd

) 1
3

Tconf & 2Tconf > 2TCMB =⇒MΦ ≥ 0.5meV

where we used the estimate
(
gconf
gkd

) 1
3
& 1

3.5 .
If MΦ < 0.5meV the dark sector temperature today is still higher then the confinement

temperature and the dark sector is in the deconfined phase. The energy density of dark gluons is
then given by the standard relation for relativistic radiation

ρ′Dgluons =
π2

30
2
(
N2

DC − 1
)
T
′4
conf =

8

15
π2T

′4
0 =

8

15
π2

(
gtoday

gkd

) 4
3

T 4
CMB

Ω′Dgluons,0h
2 ≈ 1

2
Ω′CMB,0h

2 (5.25)
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5.3.3 Constraints on cosmologically stable glueballs

We have already discussed in section 5.1.3 what are the constraints on glueballs decaying
during the BBN or after, with lifetime 1 s < τΦ < 1017 s. We want now to analyse the case
of cosmologically stable glueballs and understand if they can be a component of dark matter,
accounting for a part of the dark matter density together with the gluequarks . Let us outline
the main cosmological bounds.

Upper bound on the mass of stable glueballs from the relic abundance

First of all, the relic abundance of glueballs is bounded from above by the value of the dark
matter density parameter, in order not to overclose the Universe.

The density parameter for dark matter measured by Planck [103] is

ΩDMh
2 = 0.1186± 0.0020

This translate into an upper bound on the mass of stable glueballs:

MΦ . 0.4
MΦ

T ′d
ξ eV (5.26)

As discussed previously (see equation 5.8), we have the estimates 1 . ξ . 4 and MΦ
T ′d
∼ O(20− 40).

The upper bound on the glueball mass then becomes

MΦ . O(8− 64) eV

Number of relativistic degrees of freedom during BBN

The upper bound on the mass of stable glueballs analysed in the previous section implies that in
the allowed parameter space region with stable glueballs the confinement temperature is below
the Big Bang Nucleosynthesis temperature TBBN ∼ 1MeV.

At the epoch of BBN the dark sector is then still in the deconfined phase and the dark gluons
contribute to the relativistic degrees of freedom, behaving as dark radiation. Extra radiation at
the time of BBN modifies the primordial Helium fraction5 and is constrained by observations.

Usually this effect is parametrised as a contribution to the effective number of neutrinos

∆Neff =
4

7
g′BBN

(
T ′

T

)4

BBN

(5.27)

5The expansion rate in the early Universe is fixed by the Friedmann equation H2 = 4πGNρ/3; in the radiation
dominated era it depends on the energy density of relativistic degrees of freedom, with no distinction between dark
and visible sector. The presence of dark radiation increases the expansion rate, inducing an earlier neutron-proton
freeze-out. This leaves an higher fraction of neutrons available for the synthesis of 4He.
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Inverting the definition ξ = gT 3

g′T ′3
we can express the temperature ratio as

(
T ′

T

)4

BBN

=

(
g

g′

) 4
3

BBN

1

ξ
4
3

We can then express ξ as a function of ∆Neff and obtain a bound on ξ from the experimental
bound on ∆Neff :

ξ =

(
4

7

) 3
4 gBBN(
g′BBN

) 1
4

(∆Neff)−
3
4

Using the values gBBN = 10.75 and g′BBN = 2(N2
DC − 1) = 16 we arrive at

ξ = 3.5(∆Neff)−
3
4 (5.28)

Using the bound ∆Neff < 1 at 95% of confidence level from reference [104], we obtain the
constraint

ξ > 3.5

This is only marginally consistent with the estimate for the ξ parameter (equation 5.8) that we
obtained in our model 1 . ξ . 4.

Stronger bounds can be found in the literature [105–107] giving ∆Neff < 0.3 =⇒ ξ > 8.5.
This would completely rule out the whole parameter space region with T ′conf < T ′BBN, however
these bounds have been disputed and so we use the more conservative result of reference [104].

Cosmic Microwave Background radiation constraint

Dark radiation at the time of the last scattering is strongly constrained by Planck 2015 data on
the CMB radiation.

These constraints are relevant for the parameter space region in which T ′conf < T ′LS, where
T ′LS is the temperature of the dark sector at the time of the last scattering and is given by

T ′LS =
(
gCMB
gkd

) 1
3
TLS ≈ 1

2TLS ≈ 0.1 eV. Since MΦ ∼ 7ΛDC and T ′conf ∼ ΛDC, this constraint is
relevant for glueballs with mass MΦ . O(1) eV.

Usually this is expressed as a bound on the effective number of neutrinos and the most recent
bound at 2σ from Planck [103] is

∆Neff < 0.6 (5.29)

This translates through equation 5.28 into the bound ξ > 5, that is incompatible with the range
for ξ of equation 5.8: 1 . ξ . 4. This rules out the whole parameter space region in which
MΦ . O(1) eV. However, as we stressed previously, the value of ξ has a large uncertainty, and
the observation could still be marginally consistent if Tkd & O(1)GeV.
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Structure formation

There is still a small region in the parameter space of stable glueballs that is not excluded. Using
the looser bound from equation 5.26 this corresponds to

1 eV .MΦ . 65 eV

If the glueballs are the main component of dark matter there is a bound on their mass deriving
from galaxy formation dynamics: the dark matter thermal velocity at the epoch of galaxy
formation zGF ∼ 5 should be the typical velocity measured in the galaxies β = v

c ∼ 10−3 [98].
From the virial theorem we have, thus, the condition

3

2
T ′GF .

1

2
MΦβ

2

In order for this condition to be satisfied, galaxy formation must happen after chemical decoupling
of the glueball (since β2 � T ′d/MΦ). We can relate the dark sector temperature at galaxy
formation to the photon temperature and to the decoupling temperature using the scaling
relations: T ′GF/T

′
d ∼ a−2 and TGF/Td ∼ a−1, valid for the glueballs and the photons respectively

after chemical decoupling in the glueball sector. We obtain:

T ′GF = T ′d

(
TGF

Td

)2

= T ′d

(
TCMB

Td

)2

(1 + zGF)2

Combining the two equations we derive the conservative bound:

Td & 2 eV
(
T ′d
MΦ

) 1
2

⇒ Td & 0.3 eV

We need to relate this temperature to the temperature of the dark sector. The calculation is
analogous to the one shown in equation 5.22, with Td in place of TCMB. We obtain the limit on
the glueballs mass:

MΦ & 5 keV

We conclude that glueballs in our model cannot be the main component of dark matter.
There could still be the possibility for the glueballs to be a minority component, together

with gluequarkχ as main candidate for dark matter. For this to be the case, equation 5.26 gives
a decoupling temperature Td . 0.2 eV, or equivalently ΛDC . 1 eV. This case is constrained
by observations of the matter power spectrum: during the matter dominated era, density
perturbations grow forming structures such as galaxies and galaxy clusters; if confinement
occurs during or after the epoch of matter radiation equality Teq ∼ 1 eV, dark gluons form a
relativistic fluid that interacts with dark quarks, modifying the matter power spectrum. This
possibility has been explored by Schmaltz [108–110] and results in a bound gDC . 10−3 for typical
MQ ∼ O(1)TeV, corresponding to ΛDC ≪ TCMB. This last possibility is excluded in our models
by CMB observations on the number of effective neutrinos, with the caveats discussed previously
(deriving from the large uncertainty on the kinetic decoupling temperature).
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Summary and outlook

From the discussion in the previous paragraphs, we can conclude that in our models the region
of the parameter space with stable glueballs is completely excluded by one of the following three
reasons:

◦ the relic density is too large;

◦ there is too much dark radiation at the epoch of Big Bang Nucleosynthesis or last scattering
(CMB);

◦ structure formation is not compatible with light glueballs or dark matter interacting with
dark radiation with a coupling greater than gDC ∼ 10−3.

Glueball dark matter could be viable if heavier than few keV. In particular, if it is heavier than
1MeV it can evade also the bound from BBN.

In general, if the dark sector and the standard model sector have been in equilibrium, the ξ
parameter will be given by ξ = gkd

g′kd
. The number of relativistic degrees of freedom in the standard

model is 106.75; therefore, if kinetic decoupling happens before confinement in the dark sector,
the maximum value for ξ is

ξmax =
106.75

2(N2
DC − 1)

= 6.7

This is not enough to evade the bounds of reference [108–110] and to provide a viable model of
dark matter with stable relic glueballs.

A different scenario can be one in which the two sectors have never been in thermal contact
with each other. This is the assumption usually made in most of the studies on glueball
dark matter (see for instance [111, 112]), in order to accommodate higher glueballs masses
ξ & 103, MΦ & 1MeV.

Another possibility is that kinetic decoupling occurs when confinement has already taken
place in the dark sector, as put forward on general grounds in [101,102]. The glueball entropy
is suppressed by a Boltzmann factor and the ratio ξ can become large in a parametric way. In
our model we could have an explicit realisation of this scenario if there were a parameter space
region in which glueballs are stable and heavier than 1MeV and kinetic decoupling happens later
than confinement. This could be the case if there can be stable glueballs with MΦ & O(10)MeV
and M±χ −M0

χ < MΦ (see the discussion in section 5.2).

5.4 Gluequark relic density

The thermal relic density of a species is determined by the moment at which the chemical
decoupling happens, that is when the interaction rate of number changing processes becomes
smaller than the Hubble expansion rate. This event is referred as freeze-out : after this moment
the number of particles per comoving volume is fixed and the their momentum and number
density are just red-shifted by the expansion of the universe.
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The freeze-out is determined by the condition Γ ∼ H

nf.o. 〈σv〉 ∼
T 2

f.o.

MPl
(5.30)

A naive estimate of the relic density can be found6 using the previous equation:

Ωχ =
Mχn0

ρcrit
=
Mχnf.o.

ρcrit

(
TCMB

Tf.o.

)3

=
T 3

CMB

ρcrit
xf.o.

(
nf.o.

T 2
f.o.

)
=

(
T 3

CMB

ρcrit MPl

)
xf.o.

〈σv〉

where xf.o. = Mχ/Tf.o. Inserting the numerical values we arrive at(
Ωχ

0.26

)
≈ xf.o.

26

(
10−8 GeV−2

〈σv〉

)
(5.31)

Using the expression for the number density of a non-relativistic particle in thermal equilibrium

n = g

(
MχT

′

2π

) 3
2

e−
Mχ
T ′ ∼

M3
χ

x3/2
e−x

the value of xf.o. can be obtained by making again use of equation 5.30:

M3
χ

x3/2
e−x ∼

M2
χ

x2MPl〈σv〉
√
xe−x ∼ 1

MPlMχ〈σv〉

Solving numerically this equation for typical values of 〈σv〉 and Mχ one finds that

xf.o. ∼ O(20− 40) (5.32)

with a weak logarithmic dependence on Mχ〈σv〉.
Therefore the dark matter relic abundance ΩDM ∼ 0.26 is reproduced by equation 5.31 if the

annihilation cross section is of order

〈σv〉 ∼ 10−8 GeV−2

For a more careful calculation one has to solve the Boltzmann equation [113]. For the annihilation
of two identical particles this reads

dn

dt
+ 3Hn = −〈σv〉

(
n2 − n2

eq

)
where n is the number density of dark matter particles, neq its equilibrium value and 〈σv〉 the

6In this calculation we are assuming that the dark matter candidate is non-relativistic at freeze-out, i.e. it is a
cold relic.
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thermally averaged annihilation cross section defined as

〈σv〉 =

∫
σv dneq

1 dneq
2∫

dneq
1 dneq

2

It is customary to reabsorb the term due to the Hubble expansion 3Hn using the variable
Y = n/s, where s is the comoving entropy and entropy conservation dictates ds

dt + 3Hs = 0.
Using the scale factor a as a time coordinate and the definition of Hubble parameter H = ȧ/a

we arrive at
dY

da
= −s 〈σv〉

aH

(
Y 2 − Y 2

eq

)
As a last step we rewrite the Boltzmann equation as a function of the variable x = Mχ/T , where
T is the photon temperature7 obtaining:

dY

dx
= −s 〈σv〉

Hx

(
Y 2 − Y 2

eq

)
(5.33)

This equation must be solved numerically or through approximate analytical methods in order
to find the dark matter relic abundance.

5.4.1 Annihilation cross section

The annihilation of χ can take place through two different channels: dark gluons (for all the dark
quarks) or Standard Model particles (for the dark quarks charged under GSM).

The relevant scale for the annihilation is Tf.o. ∼ MQ/20 � ΛDC in the allowed parameter
space region, therefore we are still in a perturbative regime.

The cross section for the annihilation of two dark quarks in two dark gluons can be estimated
as

σ ∼ 4π
α2

DC

M2
χ

while for the annihilation in Standard Model particles one has

σ ∼ 4π
1

N2
DC

α2
EW

M2
χ

The additional factor 1/N2
DC is due to the average over initial states: dark quarks transform as

the adjoint of SU(N)DC and have thus a multiplicity of (N2
DC− 1). Since the final state is a dark

colour singlet we get a suppression factor of order 1/N2
DC.

In our models, the parameter space region compatible with a fast decay of the glueballs
and consistent with observations from BBN and CMB corresponds to αDC ∼ 0.1, while the
electroweak coupling gives αEW ∼ 0.03. Comparing the two estimates, for NDC = 3, we find that
the annihilation cross section in dark gluons is two orders of magnitude stronger than the one in
Standard Model particles. We thus neglect the latter, focusing our attention on the former.

7As we discussed in section 5.2, at freeze-out the dark sector is in thermal equilibrium with the visible sector,
therefore we have a single thermal bath.
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Calculation of the annihilation cross section in dark gluons

We consider the annihilation of a pair of Weyl adjoint fermions (dark quarks) in two dark gluons.
For simplicity we consider the case in which the dark quark is a Standard Model singlet (this
corresponds to the field N defined in section 4.3).

There are three diagrams that contribute to the annihilation cross section at tree level:
t-channel and u-channel annihilation (with a virtual dark quarks) and s-channel annihilation
(with a virtual dark gluon).

Using the lagrangian 4.31, one obtains the following amplitudes for the three diagrams:

iM1 = −ig2
DCv̄(p2)γν

/p1 − /k1 +M

t−M2
γµu(p1)ε∗1µε

∗
2ν

(
T dadjT

c
adj

)
ba

iM2 = −ig2
DCv̄(p2)γµ

/p1 − /k2 +M

u−M2
γνu(p1)ε∗1µε

∗
2ν

(
T cadjT

d
adj

)
ba

iM3 = −ig2
DCv̄(p2)γρu(p1)

1

s2

[
gµν(k2 − k1)ρ + gνρ(−k1 − 2k2)µ + gµρ (2k1 + k2)ν

]
ε∗1µε

∗
2ν

(
T eadj

)
ba

(fcde)

(5.34)

where s, t, u are the Mandelstam variables.
Squaring the amplitude we have

|M|2= |M1|2+|M2|2+|M3|2+2 Re(M1M∗2) + 2 Re(M1M∗3) + 2 Re(M2M∗3)

Summing over gluon polarisations λ we need to evaluate the sum
∑

λ ε
∗
1µε1ρ and similarly for ε2.

The sum is restricted to the physical polarisations of the gluons in the final state, namely transverse
modes. Usually in QED one takes advantage of the Ward identity k1µMµν = k2νMµν = 0 and
replace this sum with the sum over transverse and longitudinal polarisations∑

transverse,
longitudinal

ε∗1µε1ρ = −gµρ

In words, this is equivalent to say that in QED the Ward identity ensures that the amplitude to
produce on-shell longitudinal photons in the final state from an initial state with no longitudinal
photons is identically zero8.

In the non-abelian case more care is needed. The naive Ward identity is no more valid and it
must be replaced with Slavnov-Taylor identities [114,115] such as

α−1
DC〈T∂µAaµ(x)Abν(y)〉 = −i〈T c̄a(x)(Dνc)

b(y)〉

where ca(x) is the Faddeev-Popov ghost. This implies that k1µMµν 6= 0, k2µMµν 6= 0. In
particular, the amplitude for producing a couple of unphysical longitudinally polarised gluons is
non-zero, while the amplitude to produce a transverse gluon together with a longitudinal gluon
is zero as for the usual case (see [67] for a discussion).

8This is true at each loop order, but only once all the diagrams have been included (i.e. it is not true diagram
by diagram).
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As a result, we cannot sum over physical and unphysical polarisation because these would
give a spurious contribution to the cross section, violating the unitarity of the theory. This was
first noted by Feynman in 1963 ( [116]), long before QCD was formulated and recognised as the
fundamental theory of strong interactions, and led to the introduction of Faddeev-Popov gosths
few years later [117].

Three possible routes can be chosen (all yielding the same result9)

◦ perform explicitly the sum over transverse polarisations in the reference frame of interest.
This is straightforward but computationally cumbersome.

◦ sum over physical and unphysical polarisation and add the (negative) cross section to
produce a ghost-antighost pair, in order to recover unitarity.

◦ modify the three-gluons vertex in such a way that the amplitude for physical polarisations
is unchanged Mµνε∗1µε

∗
2ν = M̃µνε∗1µε

∗
2ν but now, differently from before, k1µM̃µν =

k2νM̃µν = 0. This was first suggested by Feynman in [116].

We choose to pursue the last route and modify the gluon vertex, following [119]. The amplitude
iM3 becomes:

iM̃3 = −ig2
DCv̄(p2)γρu(p1)

1

s2

[
gµν(k2 − k1)ρ − 2gνρkµ2 + 2gρµkν1

]
ε∗1µε

∗
2ν

(
T eadj

)
ba

(fcde)

We can now replace the sum over physical polarisations with a sum over transverse and longitudinal
polarisations, and use

∑
ε∗µερ = −gµρ.

To calculate the cross section we square the amplitude, sum over final state polarisations and
colours indices and average over initial state spin and colour indices. The following group theory
factors are needed in the calculation:

Tr
(
T dadjT

d
adjT

c
adjT

c
adj

)
=
(
N2

DC − 1
)
N2

DC

Tr
(
T dadjT

c
adjT

d
adjT

c
adj

)
=

(
N2

DC − 1
)
N2

DC

2

Tr
(
T eadjT

h
adj

)
Tr
(
T eadjT

h
adj

)
=
(
N2

DC − 1
)
N2

DC

Tr
(
T cadjT

d
adjT

e
adj

)(
if cde

)
= −

(
N2

DC − 1
)
N2

DC

2

Using the previous results and performing the Dirac algebra we arrive at the averaged squared
9Explicit calculations in the context of QCD were carried to evaluate the cross section for the production of

charmed particles from gluon-gluon annihilation in proton-antiproton collisions. The first two methods were used
in [118], while the third in [119,120]. All the results are in agreement.
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amplitude10

〈|M|2〉 =
1

4

1

(N2
DC − 1)2

∑
|M|2= 36π2α2

(
2(M2

Q − t)(−M2
Q + s+ t)

s2
+

M2
Q(s− 4M2

Q)

(M2
Q − t)(−M2

Q + s+ t)
−

− M2
Q(2M2

Q − s− 2t) + (M2
Q − t)(−M2

Q + s+ t)

s(M2
Q − t)

+
(M2
Q − t)(−M2

Q + s+ t)− 2M2
Q(3M2

Q − s− t)
(−M2

Q + s+ t)2
+

+
(M2
Q − t)(−M2

Q + s+ t)− 2M2
Q(M2

Q + t)

(M2
Q − t)2

− M2
Q(−2M2

Q + s+ 2t) + (M2
Q − t)(−M2

Q + s+ t)

s(−M2
Q + s+ t)

)
where we used the kinematic identity s+ t+ u = 2M2

Q to eliminate u.
The differential cross section in the center of mass frame is then given by

dσ(s, t)

dt
=

1

2

1

64πs

1

|p1|2
〈|M|2〉 (5.35)

and the total cross section is obtained integrating on t:

σ(s) =
1

2

1

64πs

1

|p1|2
∫ tmax

Tmin

〈|M|2〉dt (5.36)

where the 1/2 factor accounts for the presence of two identical particles (dark gluons) in the final
state. After some relativistic kinematics one finds

|p1|2=
s

4

(
1− 4M2

Q
s

)

tmax = M2
Q −

s

2

1−

√
1− 4M2

Q
s


tmin = M2

Q −
s

2

1 +

√
1− 4M2

Q
s


Defining ∆ =

√
1− 4M2

Q/s and evaluating the integral, the cross section can be expressed as

σ(s) =
3π

4

α2
DC

s

1

∆2

[
3

(
1 +

4M2
Q
s
− 4M4

Q
s2

)
log

1 + ∆

1−∆
−
(

4 +
17M2

Q
s

)
∆
]

(5.37)

This result is consistent with a similar calculation carried out in the context of MSSM, the cross
section for the production of a pair of gluinos from the annihilation of two gluons, once the two
cross sections are related through crossing symmetry [121,122].

We are interested in the non relativistic limit of this cross section. Therefore we perform a
10We evaluate the colour factors for NDC = 3, the relevant case for the models we are studying.
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Laurent expansion in powers of the Møller velocity

v =

√
(p1 · p2)2 − (M1M2)2

E1E2
= 2

√
1− 4M2

Q
s

= 2∆ ⇒ s =
4M2
Q

1− v2

4

where we specialised to the center of mass frame and used some relativistic kinematics. It follows
that

σ =
27π

32

α2
DC

M2
Q

1

v
+

15π

64

α2
DC

M2
Q
v − 309π

2560

α2
DC

M2
Q
v3 +O

(
v5
)

(5.38)

The first term of the expansion (usually referred as the s-wave annihilation cross section) agrees
with the one quoted in [123].

We then calculate the thermal average following [113] and obtain our final result:

〈σv〉[x] =
27π

32

α2
DC

M2
Q

+
9π

64

α2
DC

M2
Q

1

x
− 963π

128

α2
DC

M2
Q

1

x2
+O

(
x−3

)
(5.39)

where x = MQ/T 'Mχ/T .
We define, for later convenience, σ0 as the thermally averaged s-wave annihilation cross

section, corresponding to the first term of the previous expansion:

σ0 =
27π

32

α2
DC

M2
Q

(5.40)

5.4.2 Sommerfeld enhancement

The tree level annihilation cross section computed in the last paragraph can have large non-
perturbative corrections due to the so called Sommerfeld enhancement [124,125]. Long range
interactions among the incoming particles can strongly distort their wave function, yielding
significant increase (if the long range interaction is attractive) or decrease (if it is repulsive) of
their annihilation cross section.

For s-wave annihilation, in the non relativistic limit the cross section is proportional to the
modulus squared of the reduced two body wave function at the origin

σ ∝ |ψk(0)|2

The Sommerfeld enhancement factor with respect to the tree level cross section can then be
expressed as

Sk =
|ψk(0)|2

|ψ(0)
k (0)|2

= |ψk(0)|2

where ψ(0)
k (~x) = ei

~k·~x is the plane-wave approximation for the unperturbed case while ψk(~x) takes
into account long range interactions among the two incoming particles and can be determined by
solving the Schrödinger equation.
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For an abelian U(1) gauge group with massless mediator, generating Coulomb potential

V (r) =
α

r

the Sommerfeld correction [124,125] is given by

Sabelian

(
αDC

β

)
=
−παDC/β

1− e−παDC/β

where β is the velocity of an incoming particle.
The non-abelian case can be reduced to the abelian one decomposing the tensor product

of the two representations of the incoming particles (R1 and R2) into a sum of irreducible
representations [126]. For each irreducible representation R′i the potential is given by:

V (r) =
αDC

2r

(∑
i

C2

(
R′i
)
− C2(R1)− C2(R2)

)

Using the result of reference [123, 127] for the decomposition of the product of two adjoints
representations one has the following Sommerfeld enhancement factor for the annihilation cross
section of two dark quarks:

Sann =
1

6
Sabelian

(
−3

αDC

β

)
+

1

3
Sabelian

(
−3

2

αDC

β

)
+

1

2
Sabelian

(
αDC

β

)
(5.41)

5.4.3 Relic density and mass of the candidate

To compute the dark matter relic density we need to solve the Boltzmann equation 5.33

dY

dx
= −s 〈σv〉

Hx

(
Y 2 − Y 2

eq

)
We follow reference [127] and use an approximate analytical solution for the asymptotic relic
density.

We can rewrite the Boltzmann equation as

dY

dx
= −s σ0

H

〈σv〉
σ0

1

x

(
Y 2 − Y 2

eq

)
where σ0 is the thermally averaged s-wave annihilation cross section computed at tree-level,
defined in equation 5.40. During the radiation dominated epoch we have

s σ0

H
∝ T =⇒ s σ0

H
=
s σ0

H

∣∣∣
T=Mχ

T

Mχ
= λ

1

x

Using the Friedmann equation and expressing the entropy density we can write λ as

λ = σ0

(
2π2

45
gTOTM

3
χ

)√
3M2

Pl

8π

30

π2gTOT

1

M4
χ

= σ0

√
gTOTπ

45
MPlMχ
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where gTOT = gSM + gDC = 106.75 + 16 = 122.75 is the effective number of relativistic degrees of
freedom at temperature T ∼MQ.

The factor 〈σv〉/σ0 corresponds to the Boltzmann enhancement S(x) discussed previously.
Therefore we obtain our final form for the Boltzmann equation

dY

dx
= −λS(x)

x2

(
Y 2 − Y 2

eq

)
(5.42)

An approximate asymptotic solution has been obtained in [127]:

Y (∞) =
1

λ

(∫ ∞
xf

S(x)

x2
dx+

S(xf )

x2
f

)−1

(5.43)

where xf is defined by the relation

xf = ln

(
2gχS(xf )λ

(2πxf )3/2

)

and can be identified with the scale at which freeze-out occurs11.
The relic abundance can then be expressed as:

ΩDM =
ρDM

ρcrit
=

nDMMχ

3H2
0M

2
Pl/8π

=
Y (∞)s0Mχ

3H2
0M

2
Pl/8π

where we have used the definition of Y = nDM/sTOT and the fact that the present day entropy
is dominated by the cosmic background radiation photons (there is no dark radiation, since the
gluons confine in glueballs and then decay quickly), so that sTOT = s0.

Inverting the previous relation, using equation 5.43 and the definition of λ we obtain an
expression for Mχ:

M2
χ =

ΩDMh
2

0.110

√
gTOTπ

45

(
σ0M

2
χ

)(∫ ∞
xf

S(x)

x2
dx+

S(xf )

x2
f

)(
4× 103 TeV2

)
(5.44)

For a dark quark singlet under the Standard Model (i.e. N), the thermally averaged s-wave cross
is given by equation 5.40. The Q2 of this process is of order MQ, so we use the value of the dark
colour coupling constant at the scale MQ:

σ0 =
27π

32

1

M2
Q

 2π

11 log
(
MQ
ΛDC

)
2

If the dark quark is an SU(2)EW multiplet of dimension L, the cross section is modified by an
additional factor 1/L (due to the average over initial state), giving a relic density enhanced by a
factor of L, if MQ is fixed.

11We should say, more properly, that this is the scale at which the qualitative behaviour of the solution changes,
since the freeze-out is not instantaneous.
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The Sommerfeld enhancement is given by equation 5.41. In this case, since the typical
transferred Q2 is of order αDCMQ we use the dark colour coupling renormalized at this scale.
Moreover, using the virial theorem, we express the velocity β as a function of x = MQ/T :
β '

√
3/x.

At a certain temperature Tconf confinement occurs. We cut-off the integral at xconf ∼MQ/ΛDC,
where we have estimated the confinement temperature to be of order ΛDC. In our model the
dark quarks transform as the adjoint representation, therefore they can form a bound state with
a gluon. We assume that nearly all the dark quarks confine in gluequarks , which have a mass
Mχ 'MQ, and that the recombination in di-quarks or multi-quarks is negligible. We assume,
moreover, that after confinement the annihilation of gluequarks gives negligible effects12.

Our calculation is valid in the hypothesis that confinement occurs after freeze-out. If this is
not the case, a more careful analysis is needed. The freeze-out temperature can be estimated
solving the previous relation and in our model we obtain xf ≈ 27. We consider our calculation
valid if ΛDC < Tf/4, i.e. xconf & 100.

Solving iteratively equation 5.44 we can determine the value of the dark matter candidate
that reproduces the observed relic density as a function of ΛDC.

VNN model

In this model all the neutral gluequarksV 0, N1, N2 are separately accidentally stable due to the
three accidental Z2 symmetries. Non-renormalizable operators (of dimension 6) are expected to
induce their decay with a lifetime greater than the age of the universe, as discussed in section 4.3.
The charged components of the triplet are heavier than the neutral one by ∆M ≈ 150MeV [83]
and decay to the neutral component through weak interactions after the temperature drops below
150MeV, with a short lifetime.

The dark matter is composed by the three neutral gluequarks ; if the three gluequarks have
similar masses, since the relic density is determined just by dark colour interactions, the three
species will be present with the ratio V 0 : N1 : N2 = 3 : 1 : 1. Since V 0 is the neutral component
of an electroweak triplet it has electroweak interactions.

LLN model

As we discussed in section 4.3.2, in this model the only neutral accidentally stable gluequark is
N3, under the conditions that ML ≥MN and y ≤ 10−5.

The charged component of the doublets L1 and L2 decays dominantly into the neutral mass
eigenstates N1, N2 through weak interactions. These in turn decay to N3 through flavour changing
neutral currents, mediated by the Yukawa interactions in the dark sector, as discussed in section.

The relic density is given by N3 which is the mass eigenstate predominantly composed by the
Standard Model singlet dark quark N , but has non-zero coupling to the Higgs and Z bosons due
to the mixing with the doublets (see section 4.3.2.).

12The annihilation cross section for the confined states could be enhanced [35]. A dedicated study of this effect
would be needed in order to understand if it is relevant or not in this model.
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Results and discussion

The results of our calculation of the dark matter candidate mass are shown in figure 5.1a. In the
graph we display also the following regions and boundaries:

◦ green curve corresponding to the upper bound on ΛDC, coming from the requirement that the
Landau pole of the dark colour gauge coupling, if present, occurs at a scale higher than the
Planck mass (as detailed is section 4.1): ΛDC < MQ exp

(
−
√
b1 log(MQ/MPl)/(4 b0|YM)

)
;

◦ green-shaded area: in this region freeze-out and confinement occur approximately at the
same epoch and our calculation is not reliable. The left boundary is given by: ΛDC < Tf/4;

◦ orange curve: gauge coupling constant at the scale MQ corresponding to the value of the
would-be conformal infrared fixed point ΛDC = MQ exp(b1/(2b0 b0|YM));

◦ red-shaded area: region in which the glueballs decay during or after BBN and are uncon-
strained by cosmological or astrophysical observations (see section 5.1). The right boundary
corresponds to the condition: τΦ = 1 s;

◦ blue-shaded area: region in which the glueballs are cosmologically stable. This region is
excluded due to cosmological observations, as discussed is section 5.3. The right boundary
corresponds to the condition τΦ = 1017 s.

For the model LLN, in the case in which the Yukawa coupling is small y ≤ 10−5 (so that the
gluequarkN3 is cosmologically stable), the glueball decay width, computed in section 5.1, is
dominated by the decay induced by the operator O8. Therefore, the glueball lifetime boundaries
are unmodified for the two models, in the relevant parameter space region and figure 5.1a is
representative for both. For comparison, we show also the corresponding graph if Yukawa
couplings of order one were allowed (figure 5.1a). For instance, this possibility could be realised
forbidding the dimension 5 non-renormalizable operator responsible for the gluequarks (discussed
in section 4.3.2) by imposing the ZDC

2 symmetry.
In the graph we show the mass MQ that the candidate should have in order to reproduce the

correct thermal abundance, as a function of ΛDC. We note that in the region in which freeze-out
and confinement overlap, the mass of the candidate drops, due to the fact that the annihilation
lasts for a shorter time. Indeed in this region even though the coupling increases, the annihilation
is less efficient; as a result the relic number density of dark matter particles is larger, requiring a
smaller mass. This can be seen from equation 5.43: there are two competing effects, the rise of
the cross section σ0 due to the higher coupling and the fall of the factor in parenthesis.

In the region in which our calculations are valid, we find viable dark matter candidates
if the dark quarks have a mass in the range MQ = (2 ÷ 3)TeV, with a confinement scale
ΛDC = (10÷ 100)GeV. We have not included non-perturbative corrections due to bound-state
formation which could lift the mass of the candidate.

From the graph we see that cosmological and astrophysical bounds on long lived decaying
relics such as glueballs [93,94] exclude almost all the parameter space region corresponding to
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(a) Parameter space region, dark matter candidate mass and cosmological
bounds for the model VNN, and the model LLN with Yukawa coupling y < 10−5,
for which there is a cosmologically accidentally stable gluequark .
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(b) Parameter space region, dark matter candidate mass and cosmological
bounds for the model LLN with Yukawa coupling y ∼ 1, for which the cosmo-
logical stability of the gluequark can be obtained imposing a ZDC

2 symmetry.
This graph is presented for comparison with the previous one.

Figure 5.1: Value of the dark quark mass MQ necessary to reproduce the correct thermal relic abundance
as a function of the confinement scale ΛDC. Cosmological bounds on the parameter space MQ versus ΛDC

are represented: the blue shaded region corresponds to the regime with stable glueballs, which is excluded
by BBN or relic abundance; the red region corresponds to the regime with long-lived glueballs decaying
during or after BBN, which is excluded by astrophysical observations. The orange curve corresponds
to the condition g(MQ) = g∗ ≈ 1.07, i.e. the approximate infrared fixed point of the model. The green
shaded region can be viable, but the calculation of the dark matter relic density is no more reliable since
confinement occurs at the same epoch as freeze-out. Finally, the upper bound on ΛDC corresponds to the
condition that the dark colour gauge coupling does not have a Landau pole below MPl.
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the first branch of the β function (i.e. in which the dark colour coupling at the mass scale MQ is
smaller than g∗ and the model is asymptotically free).

The dark matter candidate in this model falls naturally in the TeV, while the region with
dark quarks with masses heavier than a few TeV is excluded. We stress that the candidate is not
a standard WIMP, since its relic abundance is not determined by electroweak interactions but by
dark colour interactions. Electroweak interactions play, however, a fundamental role in keeping
the two sector in kinetic equilibrium; this is a crucial point that sets the relevant mass scale at
the TeV for annihilation proceeding through interactions with coupling of order α ∼ 1/10.

The mass range of interest is much lower than the one typical of composite dark matter models
realising vectorlike confinement [1], which falls in the 100TeV range saturating the perturbative
unitarity bound for the mass of thermal relics [128]. This is due to the fact that in our model
the confinement occurs when the dynamics is still perturbative, while in the other case the
annihilation of dark baryons takes place in a non-perturbative regime, with large hadron-like
annihilation cross sections.

Moreover, the candidates of our model are lighter also with respect to the baryonic dark matter
candidates of models with heavy dark quarks transforming as the fundamental representation of
the dark colour gauge group [35], which are typically in the mass range of (10÷ 100)TeV. This
mismatch can be traced back to the following reasons:

◦ gluequarks have a mass Mχ ∼ MQ while baryons with heavy dark quarks have a mass
MB ∼ NDCMQ;

◦ the tree-level annihilation cross section and the Sommerfeld enhancement factor are modified
by group theory factors due to the difference in the representations of the dark quarks;

◦ at the confinement transition, adjoint dark quarks confine predominantly in gluequarkswhile
dark quarks in the fundamental representation can confine in (cosmologically unstable)
mesons and baryons with comparable probabilities;

◦ our calculations do not include corrections to the annihilation cross section due to bound
state formation [127], nor the effect of annihilation after confinement.

The mass range we have obtained is interesting also from the phenomenological point of view,
since it lies at the boundary of the current collider and direct detection sensitivities. Further
studies will be needed to address the collider phenomenology and the direct detection signatures.
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Conclusions

In this work we have studied theories with a dark sector featuring a non-Abelian gauge dynamics
that induces accidentally stable composite dark matter candidates. We have identified two classes
of theories, namely chiral models and models with infrared fixed points, that have received little
attention in the literature and that can provide new scenarios for composite dark matter, with a
dynamics much different from the one realised in theories with vectorlike confinement.

This work represents an introductory study for the dynamics of the two classes of models
that we have identified. After discussing some general properties of chiral models, we have shown
that under quite general assumptions, in the absence of fundamental scalar fields, models based
on SU(N)DC gauge group have massless or light states, suggesting a few mechanisms to lift their
masses.

In the second part of the thesis we have considered models with an infrared fixed point. We
have identified two models with a simple field content (five adjoint Weyl fermions) which have
a perturbative fixed point and we have studied their dynamics. The explicit mass term of the
dark quarks drives the theory away from the fixed point, breaking the approximate conformal
invariance and leaving a confining dynamics in the infrared. If the dark quarks have all the
same mass, the dynamics of the model automatically gives a confining gauge theory with dark
quarks heavier than the confinement scale. Below the confinement scale, the relevant asymptotic
states are given by gluequarks (dark gluon-quark bound states) and glueballs (gluon-gluon bound
states).The models are characterised by two scales: the confinement scale ΛDC and the dark
quark mass MQ. A large separation of scales can arise naturally between MQ and ΛDC, due to
the renormalization group flow, if the dark colour gauge coupling at the scale MQ is of order one
or smaller.

The two models differ in the assignment of Standard Model quantum numbers for the dark
quarks. They represent two benchmark scenarios: one without Yukawa couplings with the Higgs
field in which three of the dark quarks transform as a triplet of SU(2)EW, while the other two
are singlets (we refer to this model as V NN using the notation of reference [34]); one with
Yukawa interactions, in which four of the dark quarks transform as two doublets with opposite
hypercharges and the last one transforms as a singlet (LLN model). For the two models, we
have analysed how robust is the accidental stability of the neutral gluequarks : while in the
V NN model the accidental symmetry protecting the gluequark from decaying is broken only at
the level of dimension 6 operators, in the LLN model there exists a dimension 5 operator that
induces the breaking of the accidental symmetry. In this case, in order to have a cosmologically
stable dark matter candidate, it is necessary to have a small Yukawa coupling y . 10−5. This
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dimension 5 operator is peculiar of theories with adjoint fermions and its existence depends
crucially on the Standard Model representations of the dark quarks. This observation represents
a crucial difference with respect to models in which the dark quarks transform in the fundamental
representation [1,35]: in that case baryon number is violated at the level of dimension 6 operators,
while dimension 5 operators induce only the decay of mesons, that would be stable thanks to
species number and G-parity.

Subsequently, the phenomenology of the two models has been analysed. Depending on the
two scales ΛDC and MQ the dynamics realises different regimes and different physical mechanisms
become relevant; in particular we must treat separately the two cases in which the glueballs are
stable or decay on cosmological scales. We have computed the glueball decay rate, identifying
the relevant regimes. In the parameter space region with stable glueballs, we have computed the
glueball relic density, including the effects of number changing interactions in the glueball sector
that imply a non trivial cosmological evolution. Taking into account the constraints deriving
from cosmological observations, we have concluded that a great portion of the parameter space
is excluded by cosmological observations (in particular the whole region with stable glueballs
and the region with glueballs decaying with a lifetime greater than 1 s).

One of the main results of the thesis is the calculation of the mass of the gluequark dark
matter candidate as a function of the confinement scale ΛDC, as displayed in figure 5.1. We
have computed the gluequark relic density, including the Sommerfeld enhancement correction,
deriving the value MQ of the dark quarks mass necessary to reproduce the correct thermal relic
abundance. The calculation of the relic density that we have presented is limited to the case
in which the freeze-out occurs before dark confinement. The computations give a dark matter
candidate in the region of a few TeV, which seems very interesting from the phenomenological
point of view. This result distinguishes our model from other models of composite dark matter,
in which usually the mass of the dark matter candidate is heavier: MDM ∼ (10÷ 100)TeV.

Our study demonstrates that there are models based on a non-Abelian gauge group with a
dynamics different from models realising vectorlike confinement and with peculiar properties,
which can serve as viable dark sectors with accidentally stable dark matter candidates.

The dark matter candidate of the models with an infrared fixed point that we have studied is
qualitatively different from dark baryons or dark mesons, being a composite state made of an
heavy dark quark and a dark gluon. We plan to analyse the collider phenomenology of these
models in further studies, assessing the reach of ongoing and future experiments for the detection
of gluequarks and glueballs, and the bounds deriving from electroweak precision observables and
electric dipole moments. A key point of this analysis will be the identification of characteristic
signatures for this composite dark matter candidate, that in case of detection can discriminate
its nature from that of other candidates.

Moreover, some refinement to the calculation of the relic density would be needed. Our
calculation does not include the effect of bound state formation prior to annihilation [127] nor the
annihilation of gluequarks after dark confinement, which could be relevant if the annihilation cross
section becomes enhanced after confinement. The case in which dark confinement and freeze-out
occur at the same epoch needs a separate analysis; while, in the case in which freeze-out occurs
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after confinement, the freeze-out mechanism should be modified, due to the unstable nature
of the glueballs in which the gluequarks annihilate, realising a variation of the one-way phase
described in [100].

From the view point of model building, the models we have considered have dark quarks
transforming in Standard Model representations which are fragments of SU(5) representations,
following [34] and assuming an SU(5) unification scheme at high energies. Since the dimension
of the non-renormalizable operators that violate dark parity (giving strong constraints on the
Yukawa couplings) depends crucially on the Standard Model quantum numbers, one could try to
use different representations, embedding the theory in a different great unification scheme. This
could allow, for instance, to have a model with Yukawa couplings but with no dimension 5 dark
parity violating operators.

Finally, our analysis has been limited to the case of perturbative fixed points. It would be
interesting to analyse a model for a dark sector based on a strongly interacting infrared fixed
point and see which properties generalise to this case and which are the new features.

As for models with chiral representations, following this work, one point that we would like to
clarify is what are the observational constraints on the light states required by ’t Hooft anomaly
matching. Regarding explicit models for a chiral dark sector, due to the difficulties in simulating
chiral gauge theories on the lattice, there is no firm result on what is their infrared dynamics.
One possibility is to make some dynamical assumptions and study the phenomenology that
results, trying to build explicit models in which all the asymptotic states acquire a non-zero mass.
In particular, we would like to build a chiral model of a dark sector with fermions charged under
both GDC and GSM and to study its phenomenology, understanding if there can be a viable dark
matter candidate and what are its peculiar properties.
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